Aeroacoustics response of wind turbine blade profiles in normal and icing conditions

2018 ◽  
Vol 42 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Edison H Caicedo ◽  
Muhammad S Virk

This article describes a multiphase computational fluid dynamics–based numerical study of the aeroacoustics response of symmetric and asymmetric wind turbine blade profiles in both normal and icing conditions. Three different turbulence models (Reynolds-averaged Navier–Stokes, detached eddy simulation, and large eddy simulation) have been used to make a comparison of numerical results with the experimental data, where a good agreement is found between numerical and experimental results. Detached eddy simulation turbulence model is found suitable for this study. Later, an extended computational fluid dynamics–based aeroacoustics parametric study is carried out for both normal (clean) and iced airfoils, where the results indicate a significant change in sound levels for iced profiles as compared to clean.

Author(s):  
J. Johansen ◽  
N. N. So̸rensen ◽  
J. A. Michelsen ◽  
S. Schreck

The Detached-Eddy Simulation model implemented in the computational fluid dynamics code, EllipSys3D, is applied on the flow around the NREL Phase-VI wind turbine blade. Results are presented for flow around a parked blade at fixed angle of attack and a blade pitching along the blade axis. Computed blade characteristics are compared with experimental data from the NREL/NASA Ames Phase-VI unsteady experiment. The Detached-Eddy Simulation model is a method for predicting turbulence in computational fluid dynamics computations, which combines a Reynolds Averaged Navier-Stokes method in the boundary layer with a Large Eddy Simulation in the free shear flow. The present study focuses on static and dynamic stall regions highly relevant for stall regulated wind turbines. Computations do predict force coefficients and pressure distributions fairly good and results using Detached-Eddy Simulation show considerably more three-dimensional flow structures compared to conventional two-equation Reynolds Averaged Navier-Stokes turbulence models, but no particular improvements are seen on the global blade characteristics.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Mustafa Kaya ◽  
Munir Elfarra

The stacking axis locations for twist and taper distributions along the span of a wind turbine blade are optimized to maximize the rotor torque and/or to minimize the thrust. A neural networks (NN)-based model is trained for the torque and thrust values calculated using a computational fluid dynamics (CFD) solver. Once the model is obtained, constrained and unconstrained optimization is conducted. The constraints are the torque or the thrust values of the baseline turbine blade. The baseline blade is selected as the wind turbine blade used in the National Renewable Energy Laboratory (NREL) Phase VI rotor model. The Reynolds averaged Navier–Stokes (RANS) computations are done using the FINE/turbo flow solver developed by NUMECA International. The k-epsilon turbulence model is used to calculate the eddy viscosity. It is observed that achieving the same torque value as the baseline value is possible with about 5% less thrust. Similarly, the torque is increased by about 4.5% while maintaining the baseline thrust value.


Mechanika ◽  
2019 ◽  
Vol 25 (4) ◽  
pp. 291-298
Author(s):  
Primož Drešar ◽  
Jožef Duhovnik

Computational fluid dynamics (CFD) is a valuable tool that complements experimental data in the development of medical devices. The reliability of CFD still presents an issue and for that reason, no standardized approaches are currently available. The United States Food and Drug Administration (FDA) has initiated the development of a program for CFD validation, and has presented an idealized nozzle benchmark model. In this study, a nozzle flow with sudden expansion has been simulated using advanced RANS-LES turbulence models. Such models partially resolve the flow and are cheaper in computer resources and time in comparison to the Large Eddy Simulation (LES). Furthermore, they are more accurate than standard Reynolds-averaged Navier-Stokes (RANS) models. A collection of hybrid turbulence models has been investigated: Detached Eddy Simulation (DES), Stress Blended Eddy Simulation (SBES), and Scale Adaptive Simulation (SAS), and compared to a standard RANS Shear Stress Transport (SST) model. Subsequently, all models were validated by experimental results already published by different research groups. Particle Image Velociometry (PIV) experiments were performed by inter-laboratory study, and the results are available online for numerical validation.  The flow conditions in this study are only restricted to a turbulence flow at a Reynolds number of Re =6500. Complementing the turbulence models investigation, two advection schemes were tested: high resolution (HR) and bounded central difference scheme (BCD). Among all advanced models the SBES model with BCD scheme has the best agreement with the experimental values.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Eduard Amromin

Various computational fluid dynamics (CFD) models employed for cavitating flows are substantially based on semi-empirical assumptions about cavitation forms and liquid flows around cavitating bodies. Therefore, the model applicability must be validated with experimental data. The stages of validation of the models are analyzed here with data on cavitating hydrofoils and axisymmetric bodies in water. Results of Reynolds-averaged Navier–Stokes (RANS), large-eddy simulation (LES), detached-eddy simulation (DES), and viscous-inviscid interaction methods are compared. The necessity of simultaneous validation of several flow parameters (as cavitation inception number and location of the appearing cavity) is pointed out. Typical uncertainties in water tunnel model test data (water quality, simplified account of wall effect) and possibilities to take them into account are also discussed. The provided comparison with experimental data manifests the impossibility to describe initial stages of cavitating flows using any single model and importance of employment of a combination of models for both the cavitation zones and the flow outside of cavities.


Sign in / Sign up

Export Citation Format

Share Document