scholarly journals Relationship between Muscle Oxygenation Kinetics and Tolerance to Fatigue on Short-term Isometric Knee Extension Exercise

2013 ◽  
Vol 53 (July) ◽  
pp. 93-98
Author(s):  
Kaori Mitsuoka ◽  
Ryotaro Kime ◽  
Takuya Osada ◽  
Norio Murase ◽  
Toshihito Katsumura
2018 ◽  
Vol 35 (8) ◽  
pp. 1149-1156
Author(s):  
Alexander Beaumont ◽  
Nicholas Sculthorpe ◽  
John Hough ◽  
Viswanath Unnithan ◽  
Joanna Richards

Author(s):  
Andrew M Alexander ◽  
Shane M Hammer ◽  
Kaylin D Didier ◽  
Lillie M Huckaby ◽  
Thomas J. Barstow

Maximal voluntary contraction force (MVC), potentiated twitch force (Qpot), and voluntary activation (%VA) recover to baseline within 90s following extreme-intensity exercise. However, methodological limitations masked important recovery kinetics. We hypothesized reductions in MVC, Qpot, and %VA at task failure following extreme-intensity exercise would be less than following severe-intensity exercise, and Qpot and MVC following extreme-intensity exercise would show significant recovery within 120s but remain depressed following severe-intensity exercise. Twelve subjects (6 men) completed two severe-intensity (40, 50%MVC) and two extreme-intensity (70, 80%MVC) isometric knee-extension exercise bouts to task failure (Tlim). Neuromuscular function was measured at baseline, Tlim, and through 150s of recovery. Each intensity significantly reduced MVC and Qpot compared to baseline. MVC was greater at T¬lim (p<0.01) and at 150s of recovery (p=0.004) following exercise at 80%MVC compared to severe-intensity exercise. Partial recovery of MVC and Qpot were detected within 150s following Tlim for each exercise intensity; Qpot recovered to baseline values within 150s of recovery following exercise at 80%MVC. No differences in %VA were detected pre- to post-exercise or across recovery for any intensity. Although further analysis showed sex-specific differences in MVC and Qpot, future studies should closely examine sex-dependent responses to extreme-intensity exercise. It is clear, however, that these data reinforce that mechanisms limiting exercise tolerance during extreme-intensity exercise recover quickly. NOVELTY: •Severe- and extreme-intensity exercise cause independent responses in fatigue accumulation and the subsequent recovery time courses. •Recovery of MVC and Qpot occurs much faster following extreme-intensity exercise in both men and women.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Riley David Stewart ◽  
Ryan A Sayer ◽  
Andrew Hopf ◽  
Chris Vigna ◽  
Eric Bombardier ◽  
...  

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 302
Author(s):  
Camryn N. Webster ◽  
Shane M. Hammer ◽  
Andrew M. Alexander ◽  
Kaylin D. Didier ◽  
Lillie M. Huckaby ◽  
...  

2009 ◽  
Vol 94 (6) ◽  
pp. 704-719 ◽  
Author(s):  
Gwenael Layec ◽  
Aurélien Bringard ◽  
Yann Le Fur ◽  
Christophe Vilmen ◽  
Jean-Paul Micallef ◽  
...  

2007 ◽  
Vol 102 (4) ◽  
pp. 481-491 ◽  
Author(s):  
John R. Thistlethwaite ◽  
Benjamin C. Thompson ◽  
Joaquin U. Gonzales ◽  
Barry W. Scheuermann

2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0011
Author(s):  
Adam Weaver ◽  
Dylan Roman ◽  
Maua Mosha ◽  
Nicholas Giampetruzzi

Background: The standard of care in ACL reconstruction (ACLR) typically involves standardized strength testing at 6 months or later to assess a patient’s readiness to return to play (RTP) using isokinetic and isometric testing, and functional strength testing. Recent literature suggests that isokinetic knee extension strength should demonstrate 89% limb symmetry index (LSI) or greater prior to returning to sport. However, there is little known on the effects of strength testing early in the rehabilitation process and the relationship to strength test performance at time of RTP. Purpose: The purpose of this study was to examine how early post-operative strength test performance impacts isokinetic strength outcomes at RTP testing in adolescents. Methods: The retrospective cohort study included patients undergoing primary ACLR between 12 and 18 years of age, early post-operative strength measures, and isokinetic dynamometer strength at RTP from July 2017 and April 2019. Data was dichotomized into desired outcomes at 3 months: >70% isometric knee extension LSI, > 20 repetitions on anterior stepdown test (AST), > 90% LSI Y Balance. At RTP testing, isokinetic knee extension strength data was categorized into >89% LSI at 3 speeds (300, 180, 60°/sec). Chi square testing and odds ratio statistics were used to examine association and its magnitude. Results: 63 patients met inclusion criteria (38 females; 15.37±1.66 years old). >70% LSI isometric knee extension strength at 3 months showed a significant association (Table 2) and demonstrated the strongest odds of having >89% LSI on isokinetic strength tests at all 3 speeds at RTP with 180°/sec being the highest (OR=14.5; 95% CI=4.25,49.43; p= <0.001). Performance on AST showed a significant association (χ2 (1, n=63) = 17.00, p <0.001), and highest odds at 180°/sec (OR=4.61; 95% CI = 1.59, 13.39, p=<0.001) and 60°/sec (OR= 3.07; 95% CI = 1.10, 8.63, p= 0.04). Combination of performance on isometric strength tests and AST showed a significant association to isokinetic strength at all three speeds, but less predictive then isometrics in isolation. (Table 2). There was no significant relationship between YBR LSI at 3 months and isokinetic strength at 6 months. Conclusion: Standardized strength testing early in rehabilitation can help identify patients that will successfully complete RTP testing. Our results suggest that isometric knee extension strength and timed anterior stepdown test provide meaningful clinical information early in the rehabilitation process. This data also suggests that the use of YBAL for predicting isokinetic strength performance is limited. [Table: see text][Table: see text]


Sign in / Sign up

Export Citation Format

Share Document