scholarly journals A Runtime System for XML Transformations in Java

2004 ◽  
Vol 11 (33) ◽  
Author(s):  
Aske Simon Christensen ◽  
Christian Kirkegaard ◽  
Anders Møller

We show that it is possible to extend a general-purpose programming language with a convenient high-level data-type for manipulating XML documents while permitting (1) precise static analysis for guaranteeing validity of the constructed XML documents relative to the given DTD schemas, and (2) a runtime system where the operations can be performed efficiently. The system, named Xact, is based on a notion of immutable XML templates and uses XPath for deconstructing documents. A companion paper presents the program analysis; this paper focuses on the efficient runtime representation.

2003 ◽  
Vol 10 (29) ◽  
Author(s):  
Aske Simon Christensen ◽  
Christian Kirkegaard ◽  
Anders Møller

We show that it is possible to extend a general-purpose programming language with a convenient high-level data-type for manipulating XML documents while permitting (1) precise static analysis for guaranteeing validity of the constructed XML documents relative to the given DTD schemas, and (2) a runtime system where the operations can be performed efficiently. The system, named X<small>ACT</small>, is based on a notion of immutable XML templates and uses XPath for deconstructing documents. A companion paper presents the program analysis; this paper focuses on the efficient runtime representation.


2013 ◽  
Vol 23 (5) ◽  
pp. 552-593 ◽  
Author(s):  
EDWIN BRADY

AbstractMany components of a dependently typed programming language are by now well understood, for example, the underlying type theory, type checking, unification and evaluation. How to combine these components into a realistic and usable high-level language is, however, folklore, discovered anew by successive language implementors. In this paper, I describe the implementation ofIdris, a new dependently typed functional programming language.Idrisis intended to be ageneral-purposeprogramming language and as such provides high-level concepts such as implicit syntax, type classes anddonotation. I describe the high-level language and the underlying type theory, and present a tactic-based method forelaboratingconcrete high-level syntax with implicit arguments and type classes into a fully explicit type theory. Furthermore, I show how this method facilitates the implementation of new high-level language constructs.


2003 ◽  
Vol 10 (19) ◽  
Author(s):  
Christian Kirkegaard ◽  
Anders Møller ◽  
Michael I. Schwartzbach

XML documents generated dynamically by programs are typically represented as text strings or DOM trees. This is a low-level approach for several reasons: 1) Traversing and modifying such structures can be tedious and error prone; 2) Although schema languages, e.g. DTD, allow classes of XML documents to be defined, there are generally no automatic mechanisms for statically checking that a program transforms from one class to another as intended. We introduce X<small>ACT</small>, a high-level approach for Java using XML templates as a first-class data type with operations for manipulating XML values based on XPath. In addition to an efficient runtime representation, the data type permits static type checking using DTD schemas as types. By specifying schemas for the input and output of a program, our algorithm will statically verify that valid input data is always transformed into valid output data and that no errors occur during processing.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ilia Lebedev ◽  
Christopher Fletcher ◽  
Shaoyi Cheng ◽  
James Martin ◽  
Austin Doupnik ◽  
...  

We present a highly productive approach to hardware design based on a many-core microarchitectural template used to implement compute-bound applications expressed in a high-level data-parallel language such as OpenCL. The template is customized on a per-application basis via a range of high-level parameters such as the interconnect topology or processing element architecture. The key benefits of this approach are that it (i) allows programmers to express parallelism through an API defined in a high-level programming language, (ii) supports coarse-grained multithreading and fine-grained threading while permitting bit-level resource control, and (iii) reduces the effort required to repurpose the system for different algorithms or different applications. We compare template-driven design to both full-custom and programmable approaches by studying implementations of a compute-bound data-parallel Bayesian graph inference algorithm across several candidate platforms. Specifically, we examine a range of template-based implementations on both FPGA and ASIC platforms and compare each against full custom designs. Throughout this study, we use a general-purpose graphics processing unit (GPGPU) implementation as a performance and area baseline. We show that our approach, similar in productivity to programmable approaches such as GPGPU applications, yields implementations with performance approaching that of full-custom designs on both FPGA and ASIC platforms.


Robotica ◽  
1988 ◽  
Vol 6 (3) ◽  
pp. 243-253 ◽  
Author(s):  
C. Laugier

SUMMARYA high-level robot programming language constitutes a general purpose interface for accessing the basic functional capabilities of a robot. On the other hand, CAD facilities give the possibility of using a subset of these capabilities in an easier fashion. In this paper, we show how a robot programming language and CAD facilities can be combined to obtain a robot programming system satisfying the need for generality, and allowing an easy connection with the basic robot programming functions. Such a connection is based on a “complete” simulator providing facilities for executing robot control programs on a graphic display, for describing manipulation tasks using interactive graphic tools, for simulating the physical world and its perception through sensors, and for displaying three-dimensional scenes as shaded pictures.


Robotica ◽  
1987 ◽  
Vol 5 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Rajko Milovanovic

SUMMARYWe present an analysis of currently available user language facilities for sensor-based programming of robot assembly tasks. A common criterion is defined that a language support for sensor-based programming must satisfy. Finally, drawing upon a novel mechanism of generalized exception, we present a framework for a complete solution of these problems in a high level block structured and complex language, as well as a possible implementation of such tools.


Sign in / Sign up

Export Citation Format

Share Document