scholarly journals Orientations on 2-vector Bundles and Determinant Gerbes

2013 ◽  
Vol 113 (1) ◽  
pp. 63 ◽  
Author(s):  
Thomas Kragh

In a paper from 2009, a half magnetic monopole was discovered by Ausoni, Dundas, and Rognes. This describes an obstruction to the existence of a continuous map $K(ku) \to B(ku^*)$ with determinant like properties. This magnetic monopole is in fact an obstruction to the existence of a map from $K(ku)$ to $K(\mathsf{Z},3)$, which is a retract of the natural map $K(\mathsf{Z},3) \to K(ku)$; and any sensible definition of determinant like should produce such a retract. In this paper we describe this obstruction precisely using monoidal categories. By a result from 2011 by Baas, Dundas, Richter and Rognes $K(ku)$ classifies 2-vector bundles. We thus define the notion of oriented 2-vector bundles, which removes the obstruction by the magnetic monopole. We use this to define an oriented K-theory of 2-vector bundles with a lift of the natural map from $K(\mathsf{Z},3)$. It is then possible to define a retraction of this map and since $K(\mathsf{Z},3)$ classifies complex gerbes we call this a determinant gerbe map.

1967 ◽  
Vol 29 ◽  
pp. 121-126
Author(s):  
Akikuni Kato

In the present note we shall be concerned with the improvement of fundamental definitions in higher order enumerative geometry which has been recently given by W. F. Pohl. Pohl’s definition of q-th derivative of vector bundle is very complicated. We shall give a simpler and more reasonable definition of the q-th derivative of vector bundle in terms of sheaf theory and simplify the proofs in [P]. We shall also give a definition of higher order singularity of map.


2018 ◽  
Vol 30 (06) ◽  
pp. 1840002
Author(s):  
Michael F. Atiyah ◽  
Carlos Zapata-Carratala

In this paper, we present a new approach to the definition of the Jones polynomial using equivariant K-theory. Dedicated to Ludwig Faddeev


2019 ◽  
Vol 30 (11) ◽  
pp. 1950057 ◽  
Author(s):  
M. Izumi ◽  
T. Sogabe

We determine the group structure of the homotopy set whose target is the automorphism group of the Cuntz algebra [Formula: see text] for finite [Formula: see text] in terms of K-theory. We show that there is an example of a space for which the homotopy set is a noncommutative group, and hence, the classifying space of the automorphism group of the Cuntz algebra for finite [Formula: see text] is not an H-space. We also make an improvement of Dadarlat’s classification of continuous fields of the Cuntz algebras in terms of vector bundles.


Author(s):  
D. Husemöller ◽  
M. Joachim ◽  
B. Jurčo ◽  
M. Schottenloher
Keyword(s):  

Author(s):  
Eckhard Meinrenken ◽  
Jeffrey Pike

Abstract Given a double vector bundle $D\to M$, we define a bigraded bundle of algebras $W(D)\to M$ called the “Weil algebra bundle”. The space ${\mathcal{W}}(D)$ of sections of this algebra bundle ”realizes” the algebra of functions on the supermanifold $D[1,1]$. We describe in detail the relations between the Weil algebra bundles of $D$ and those of the double vector bundles $D^{\prime},\ D^{\prime\prime}$ obtained from $D$ by duality operations. We show that ${\mathcal{V}\mathcal{B}}$-algebroid structures on $D$ are equivalent to horizontal or vertical differentials on two of the Weil algebras and a Gerstenhaber bracket on the 3rd. Furthermore, Mackenzie’s definition of a double Lie algebroid is equivalent to compatibilities between two such structures on any one of the three Weil algebras. In particular, we obtain a ”classical” version of Voronov’s result characterizing double Lie algebroid structures. In the case that $D=TA$ is the tangent prolongation of a Lie algebroid, we find that ${\mathcal{W}}(D)$ is the Weil algebra of the Lie algebroid, as defined by Mehta and Abad–Crainic. We show that the deformation complex of Lie algebroids, the theory of IM forms and IM multi-vector fields, and 2-term representations up to homotopy all have natural interpretations in terms of our Weil algebras.


Author(s):  
El-Kaïoum M. Moutuou

AbstractWe develop equivariant KK–theory for locally compact groupoid actions by Morita equivalences on real and complex graded C*-algebras. Functoriality with respect to generalised morphisms and Bott periodicity are discussed. We introduce Stiefel-Whitney classes for real or complex equivariant vector bundles over locally compact groupoids to establish the Thom isomorphism theorem in twisted groupoid K–theory.


Author(s):  
Claudio Meneses ◽  
Leon A. Takhtajan

AbstractModuli spaces of stable parabolic bundles of parabolic degree 0 over the Riemann sphere are stratified according to the Harder–Narasimhan filtration of underlying vector bundles. Over a Zariski open subset $$\mathscr {N}_{0}$$ N 0 of the open stratum depending explicitly on a choice of parabolic weights, a real-valued function $$\mathscr {S}$$ S is defined as the regularized critical value of the non-compact Wess–Zumino–Novikov–Witten action functional. The definition of $$\mathscr {S}$$ S depends on a suitable notion of parabolic bundle ‘uniformization map’ following from the Mehta–Seshadri and Birkhoff–Grothendieck theorems. It is shown that $$-\mathscr {S}$$ - S is a primitive for a (1,0)-form $$\vartheta $$ ϑ on $$\mathscr {N}_{0}$$ N 0 associated with the uniformization data of each intrinsic irreducible unitary logarithmic connection. Moreover, it is proved that $$-\mathscr {S}$$ - S is a Kähler potential for $$(\Omega -\Omega _{\mathrm {T}})|_{\mathscr {N}_{0}}$$ ( Ω - Ω T ) | N 0 , where $$\Omega $$ Ω is the Narasimhan–Atiyah–Bott Kähler form in $$\mathscr {N}$$ N and $$\Omega _{\mathrm {T}}$$ Ω T is a certain linear combination of tautological (1, 1)-forms associated with the marked points. These results provide an explicit relation between the cohomology class $$[\Omega ]$$ [ Ω ] and tautological classes, which holds globally over certain open chambers of parabolic weights where $$\mathscr {N}_{0} = \mathscr {N}$$ N 0 = N .


Author(s):  
D. Husemöller ◽  
M. Joachim ◽  
B. Jurčo ◽  
M. Schottenloher
Keyword(s):  
K Theory ◽  

Sign in / Sign up

Export Citation Format

Share Document