scholarly journals Logarithmic Connections, WZNW Action, and Moduli of Parabolic Bundles on the Sphere

Author(s):  
Claudio Meneses ◽  
Leon A. Takhtajan

AbstractModuli spaces of stable parabolic bundles of parabolic degree 0 over the Riemann sphere are stratified according to the Harder–Narasimhan filtration of underlying vector bundles. Over a Zariski open subset $$\mathscr {N}_{0}$$ N 0 of the open stratum depending explicitly on a choice of parabolic weights, a real-valued function $$\mathscr {S}$$ S is defined as the regularized critical value of the non-compact Wess–Zumino–Novikov–Witten action functional. The definition of $$\mathscr {S}$$ S depends on a suitable notion of parabolic bundle ‘uniformization map’ following from the Mehta–Seshadri and Birkhoff–Grothendieck theorems. It is shown that $$-\mathscr {S}$$ - S is a primitive for a (1,0)-form $$\vartheta $$ ϑ on $$\mathscr {N}_{0}$$ N 0 associated with the uniformization data of each intrinsic irreducible unitary logarithmic connection. Moreover, it is proved that $$-\mathscr {S}$$ - S is a Kähler potential for $$(\Omega -\Omega _{\mathrm {T}})|_{\mathscr {N}_{0}}$$ ( Ω - Ω T ) | N 0 , where $$\Omega $$ Ω is the Narasimhan–Atiyah–Bott Kähler form in $$\mathscr {N}$$ N and $$\Omega _{\mathrm {T}}$$ Ω T is a certain linear combination of tautological (1, 1)-forms associated with the marked points. These results provide an explicit relation between the cohomology class $$[\Omega ]$$ [ Ω ] and tautological classes, which holds globally over certain open chambers of parabolic weights where $$\mathscr {N}_{0} = \mathscr {N}$$ N 0 = N .

Author(s):  
Frank Loray ◽  
◽  
Valente Ramírez ◽  

We are interested in studying moduli spaces of rank 2 logarithmic connections on elliptic curves having two poles. To do so, we investigate certain logarithmic rank 2 connections defined on the Riemann sphere and a transformation rule to lift such connections to an elliptic curve. The transformation is as follows: given an elliptic curve C with elliptic quotient, and the logarithmic connection, we may pullback the connection to the elliptic curve to obtain a new connection on C. After suitable birational modifications we bring the connection to a particular normal form. The whole transformation is equivariant with respect to bundle automorphisms and therefore defines a map between the corresponding moduli spaces of connections. The aim of this paper is to describe the moduli spaces involved and compute explicit expressions for the above map in the case where the target space is the moduli space of rank 2 logarithmic connections on an elliptic curve C with two simple poles and trivial determinant.


2004 ◽  
Vol 15 (03) ◽  
pp. 259-287
Author(s):  
FRANCESCA GAVIOLI

In this paper we extend the result on base point freeness of the powers of the determinant bundle on the moduli space of vector bundles on a curve. We describe the parabolic analogues of parabolic theta functions, then we determine a uniform bound depending only on the rank of the parabolic bundles. In order to get this bound, we construct a parabolic analogue of Grothendieck's scheme of quotients, which parametrizes quotient bundles of a parabolic bundle, of fixed parabolic Hilbert polynomial. We prove an estimate for its dimension, which extends the result of Popa and Roth on the dimension of the Quot scheme. As an application of the theorem on base point freeness, we characterize parabolic semistability on the algebraic stack of quasi-parabolic bundles as the base locus of the linear system of the parabolic determinant bundle.


2020 ◽  
pp. 1-23
Author(s):  
MICHELE BOLOGNESI ◽  
NÉSTOR FERNÁNDEZ VARGAS

Abstract Let C be a hyperelliptic curve of genus $g \geq 3$ . In this paper, we give a new geometric description of the theta map for moduli spaces of rank 2 semistable vector bundles on C with trivial determinant. In order to do this, we describe a fibration of (a birational model of) the moduli space, whose fibers are GIT quotients $(\mathbb {P}^1)^{2g}//\text {PGL(2)}$ . Then, we identify the restriction of the theta map to these GIT quotients with some explicit degree 2 osculating projection. As a corollary of this construction, we obtain a birational inclusion of a fibration in Kummer $(g-1)$ -varieties over $\mathbb {P}^g$ inside the ramification locus of the theta map.


2012 ◽  
Vol 23 (04) ◽  
pp. 1250037 ◽  
Author(s):  
MICHELE BOLOGNESI ◽  
SONIA BRIVIO

Let C be an algebraic smooth complex curve of genus g > 1. The object of this paper is the study of the birational structure of certain moduli spaces of vector bundles and of coherent systems on C and the comparison of different type of notions of stability arising in moduli theory. Notably we show that in certain cases these moduli spaces are birationally equivalent to fibrations over simple projective varieties, whose fibers are GIT quotients (ℙr-1)rg// PGL (r), where r is the rank of the considered vector bundles. This allows us to compare different definitions of (semi-)stability (slope stability, α-stability, GIT stability) for vector bundles, coherent systems and point sets, and derive relations between them. In certain cases of vector bundles of low rank when C has small genus, our construction produces families of classical modular varieties contained in the Coble hypersurfaces.


2001 ◽  
Vol 49 (3) ◽  
pp. 605-620 ◽  
Author(s):  
Laura Costa ◽  
Rosa M. Miró-Roig

2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


Author(s):  
Peter Scholze ◽  
Jared Weinstein

This introductory chapter provides an overview of Drinfeld's work on the global Langlands correspondence over function fields. Whereas the global Langlands correspondence is largely open in the case of number fields K, it is a theorem for function fields, due to Drinfeld and L. Lafforgue. The key innovation in this case is Drinfeld's notion of an X-shtuka (or simply shtuka). The Langlands correspondence for X is obtained by studying moduli spaces of shtukas. A large part of this course is about the definition of perfectoid spaces and diamonds. There is an important special case where the moduli spaces of shtukas are classical rigid-analytic spaces. This is the case of local Shimura varieties. Some examples of these are the Rapoport-Zink spaces.


Sign in / Sign up

Export Citation Format

Share Document