scholarly journals Comparison of the Combined Effect of Intra Row Spacing and Harvesting Interval on Yield and Yield Components of Swiss Chard (Beta vulgaris L.)

2019 ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zerihun Sinta ◽  
Gezahegn Garo

Ethiopia is endowed with diverse agroecologies suitable for the production of tropical, subtropical, and temperate vegetables. Agronomic practices such as plant density and fertilizer management are known to affect the crop environment, which influences the growth and ultimately the yield. So far limited research has been done on plant density determination and rate of nitrogen fertilizer in Ethiopia in general and the study area in particular. Thus, this experiment was carried out to evaluate the influence of plant density and nitrogen fertilizer rates on the yield and yield components of beetroot (Beta vulgaris L.). Four plant densities (133 333, 100 000, 80 000, and 66 666 plants per hectare) and four nitrogen (N) fertilizer rates (0, 46, 92, and 138 kg N ha−1) were arranged in a factorial combination in a randomized complete block design with three replications. The results revealed that the main and interaction effects of plant density and nitrogen fertilizer rates on total root yield, root length, root fresh weight, root diameter, and total soluble solute of beetroot were significant. The highest root yield of beetroot was achieved from the combination of 66 666, 80 000, and 10 0000 plant ha−1 with 92 kg N ha−1, whereas the lowest root yield of beet was obtained from the combination of 0 kg N ha−1 with a planting density of 133 333 plants ha−1. The economic analysis showed that higher net benefit and marginal rate of return were obtained from the application of 92 kg N ha−1 with plant densities of 66 666 plants ha−1. In order to prevent excessive production costs, the use of 66 666 plants ha−1 combined with the application of 92 kg N ha−1 is recommended.


2002 ◽  
Vol 59 (4) ◽  
pp. 723-729 ◽  
Author(s):  
Elza Jacqueline Leite Meireles ◽  
Antonio Roberto Pereira ◽  
Paulo Cesar Sentelhas ◽  
Luis Fernando Stone ◽  
Francisco José Pfeilsticker Zimmermann

Simulation models are important tools for the analysis of cultivated systems to estimate the performance of crops in different environments. The CROPGRO- model (DSSAT) was calibrated and validated using Carioca bean (Phaseolus vulgaris L.) to estimate yield and the development of the crop, sown in three row spacings (0.4, 0.5, and 0.6 m) and two fertilization rates (300 and 500 kg ha-1 of 4-30-16 N-P-K), in Santo Antônio de Goiás, GO, Brazil. To calibrate the model a combination of the genetic coefficients that characterize the phenology and morphology of the dry bean crop was used to obtain the best possible fit between predicted and observed anthesis and physiological maturity dates, leaf area index (LAI), total dry matter (TDM), yield components, and grain yield for the 0.6 m row spacing. To test the model the experimental records of the 0.4 and 0.5 m row spacings were used. In both, calibration and test, the performance of the model was evaluated plotting observed and predicted values of LAI and TDM versus time, using the r², and the agreement index (d) as statistical criteria. In relation to yield and yield components the percent difference between the observed and predicted data was calculated. The model appeared to be adequate to simulate phenology, grain yield and yield components for the Carioca bean cultivar, related to different levels of fertilization and row spacing, either during calibration or the testing phase. During the test, the grain yield was overestimated by less than 15.4%, indicating a potential use for the calibrated model in assessing climatic risks in this region.


Sign in / Sign up

Export Citation Format

Share Document