scholarly journals Fertilizer Adoption Impact on Maize Yield Growth: Disparity among Major Maize Growing Administrative Regions of Ethiopia

2020 ◽  
2005 ◽  
Vol 33 (1) ◽  
pp. 229-233 ◽  
Author(s):  
Marko Josipovic ◽  
Vlado Kovacevic ◽  
D. Petosic ◽  
Jasna Sostaric
Keyword(s):  

Author(s):  
Zafar Ullah ◽  
Muhammad Shahbaz Akmal ◽  
Muzaffar Ahmed ◽  
Mohammed Ali ◽  
Aurangzaib Zaib Khan ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 298
Author(s):  
Ouorou Ganni Mariel Guera ◽  
Federico Castrejón-Ayala ◽  
Norma Robledo ◽  
Alfredo Jiménez-Pérez ◽  
Georgina Sánchez-Rivera ◽  
...  

Chemical control is the main method used to combat fall armyworm in maize crops. However, its indiscriminate use usually leads to a more complex scenario characterized by loss of its effectiveness due to the development of resistance of the insect pest, emergence of secondary pests, and reduction of the populations of natural enemies. For this reason, efforts to develop strategies for agroecological pest management such as Push–Pull are increasingly growing. In this context, the present study was carried out to evaluate field effectiveness of Push–Pull systems for S. frugiperda management in maize crops in Morelos, Mexico. In a randomized block experiment, the incidence and severity of S. frugiperda, the development and yield of maize were evaluated in nine Push–Pull systems and a maize monoculture. The Push–Pull systems presented incidence/severity values lower than those of the monoculture. Morphological development and maize yield in the latter were lower than those of most Push–Pull systems. Mombasa—D. ambrosioides, Mulato II—T. erecta, Mulato II—C. juncea, Tanzania—T. erecta and Tanzania—D. ambrosioides systems presented higher yields than those of monocultures.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


2021 ◽  
Vol 270 ◽  
pp. 108223
Author(s):  
Guangzhou Liu ◽  
Haishun Yang ◽  
Ruizhi Xie ◽  
Yunshan Yang ◽  
Wanmao Liu ◽  
...  
Keyword(s):  

Author(s):  
Isaiah O. Ochieng’ ◽  
Harun I. Gitari ◽  
Benson Mochoge ◽  
Esmaeil Rezaei-Chiyaneh ◽  
Joseph P. Gweyi-Onyango

Author(s):  
Lihua Zhang ◽  
Hongxiang Zhao ◽  
Chen Xu ◽  
Weiping Yan ◽  
Ning Sun ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (14) ◽  
pp. 8059
Author(s):  
Calogero Schillaci ◽  
Tommaso Tadiello ◽  
Marco Acutis ◽  
Alessia Perego

Proximal sensing represents a growing avenue for precision fertilization and crop growth monitoring. In the last decade, precision agriculture technology has become affordable in many countries; Global Positioning Systems for automatic guidance instruments and proximal sensors can be used to guide the distribution of nutrients such as nitrogen (N) fertilization using real-time applications. A two-year field experiment (2017–2018) was carried out to quantify maize yield in response to variable rate (VR) N distribution, which was determined with a proximal vigour sensor, as an alternative to a fixed rate (FR) in a cereal-livestock farm located in the Po valley (northern Italy). The amount of N distributed for the FR (140 kg N ha−1) was calculated according to the crop requirement and the regional regulation: ±30% of the FR rate was applied in the VR treatment according to the Vigour S-index calculated on-the-go from the CropSpec sensor. The two treatments of N fertilization did not result in a significant difference in yield in both years. The findings suggest that the application of VR is more economically profitable than the FR application rate, especially under the hypothesis of VR application at a farm scale. The outcome of the experiment suggests that VR is a viable and profitable technique that can be easily applied at the farm level by adopting proximal sensors to detect the actual crop N requirement prior to stem elongation. Besides the economic benefits, the VR approach can be regarded as a sustainable practice that meets the current European Common Agricultural Policy.


Sign in / Sign up

Export Citation Format

Share Document