scholarly journals Effectiveness of Push–Pull Systems to Fall Armyworm (Spodoptera frugiperda) Management in Maize Crops in Morelos, Mexico

Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 298
Author(s):  
Ouorou Ganni Mariel Guera ◽  
Federico Castrejón-Ayala ◽  
Norma Robledo ◽  
Alfredo Jiménez-Pérez ◽  
Georgina Sánchez-Rivera ◽  
...  

Chemical control is the main method used to combat fall armyworm in maize crops. However, its indiscriminate use usually leads to a more complex scenario characterized by loss of its effectiveness due to the development of resistance of the insect pest, emergence of secondary pests, and reduction of the populations of natural enemies. For this reason, efforts to develop strategies for agroecological pest management such as Push–Pull are increasingly growing. In this context, the present study was carried out to evaluate field effectiveness of Push–Pull systems for S. frugiperda management in maize crops in Morelos, Mexico. In a randomized block experiment, the incidence and severity of S. frugiperda, the development and yield of maize were evaluated in nine Push–Pull systems and a maize monoculture. The Push–Pull systems presented incidence/severity values lower than those of the monoculture. Morphological development and maize yield in the latter were lower than those of most Push–Pull systems. Mombasa—D. ambrosioides, Mulato II—T. erecta, Mulato II—C. juncea, Tanzania—T. erecta and Tanzania—D. ambrosioides systems presented higher yields than those of monocultures.

Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 615
Author(s):  
Albasini Caniço ◽  
António Mexia ◽  
Luisa Santos

The alien invasive insect pest Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), commonly referred to as fall armyworm (FAW), is causing significant losses to maize production in Africa since its detection in 2016. As an emergency response, governments in several countries distributed and/or promoted massive use of synthetic insecticides among smallholder farmers to fight FAW. The inappropriate use of synthetic insecticides by non-trained and ill-equipped farmers raises environmental and health concerns. This study aimed to assess the occurrence of native parasitoids of FAW, their parasitism rates, and relative abundance in the central province of Manica, Mozambique. A field collection of FAW egg masses and larvae was conducted from May to August 2019 (dry season of the 2018/2019 cropping season) and in December 2019 and January 2020 (rainy season of 2019/2020 cropping season). A total of 101 egg masses and 1444 larvae of FAW were collected from infested fields. Five larval parasitoids were recorded, but no egg parasitism was observed. Coccygidium luteum Brullé (Hymenoptera: Braconidae) and Drino quadrizonula Thomson (Diptera: Tachinidae) were the primary parasitoids. Maximum parasitism of 23.68% and 8.86% and relative abundance of 100 and 96.3 were recorded for C. luteum and D. quadrizonula, respectively. Total parasitism by different parasitoid species was at 9.49%. Cultural practices favoring the action of these parasitoids should be advocated.


1999 ◽  
Vol 28 (4) ◽  
pp. 675-685 ◽  
Author(s):  
Marliton R. Barreto ◽  
Leandro L. Loguercio ◽  
Fernando H. Valicente ◽  
Edilson Paiva

Novel vegetative insecticidal proteins (Vips) identified in the supernatant of Bacillus thuringiensis (B.t.) cultures have shown to provide adequate control over a wide spectrum of economically important crop pests. To evaluate the potential applicability of these proteins against fall armyworm (Spodoptera frugiperda Smith) larvae, the most important insect pest for tropical maize, the characteristics and mortality effects of culture supernatants from five B.t. strains were investigated. Striking differences among strains were detected, not only in terms of efficiency in killing the insect, but also regarding to mortality effects of heated and non-heated supernatants, which were used to distinguish the heat-sensitive protein-derived insecticidal fraction from a thermostable one, with a non-protein nature (b-exotoxinas). The qualitative, quantitative and temporal patterns of total protein secretion in the medium (supernatant) were assessed through spectrophotometry and polyacrylamide gel electrophoresis. The strains showed remarkably distinct rates of growth and timing for protein secretion relative to cell density in culture. Moreover, the electrophoretic-banding patterns also varied in a strain-specific manner, both in denaturing and non denaturing conditions. Polypeptides displaying a molecular weight that is very close to the expected for previously identified Vip3A proteins were found for the strains with high supernatant-mortality ratios. The data suggest the feasibility and usefulness of searching for protein-derived (Vip-like) insecticidal fractions in B.t. supernatants as a mean of developing especific and efficient alternatives of biological control to be employed in integrated pest management programs of S. frugiperda in tropical maize.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Siti Herlinda ◽  
OCTARIATI Noni ◽  
Suwandi Suwandi ◽  
Hasbi Hasbi

Abstract. Herlinda S, Octariati N, Suwandi S, Hasbi. 2020. Exploring entomopathogenic fungi from South Sumatra (Indonesia) soil and their pathogenicity against a new invasive maize pest, Spodoptera frugiperda. Biodiversitas 21: 2955-2965. Fall armyworm (Spodoptera frugiperda) is a new invasive maize pest in Indonesia that can cause maize yield losses of 18 million tons/year. To overcome the pest, local-specific entomopathogenic fungi are needed. This study aimed to explore entomopathogenic fungi from soil in South Sumatra and to determine their pathogenicity against S. frugiperda larvae. The fungi exploration was carried out in the lowlands and highlands of South Sumatra and the pathogenicity of obtained isolates were tested against the third instar larvae. The entomopathogenic fungi found were Metarhizium spp. and were successfully isolated as many as 14 isolates. All of the isolates were pathogenic to S. frugiperda larvae (70.67−78.67% mortality), the most pathogenic caused 78.67% mortality and significantly suppressed the emergence of adults up to 81.2%. Unhealthy larvae had a dry, shrunken, shrinking, odorless body, and its integument was covered in mycelia and conidia like yellowish-white powdery mixed with dark green. The unhealthy pupae and adults were in the abnormal and malformation shape. The abnormal pupae were shorter in size, bent, the to-be wings got wrinkled, and darker color, while the unhealthy adults had folded wings and were unable to fly. The two most pathogenic isolates were found from the lowland (PirOI) and highland (CasPsPGA) soil of South Sumatra. In conclusion, both of these isolates had the potential to be developed into local-specific mycoinsecticides to control pest insects in the highlands and/or lowlands in Indonesia.


2020 ◽  
Vol 12 (10) ◽  
pp. 16
Author(s):  
Yu Chen ◽  
Jingfei Guo ◽  
Zupeng Gao ◽  
Kanglai He ◽  
Shuxiong Bai ◽  
...  

The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a polyphggous and widespread insect pest. In the study, the biological characteristics and nutritional indices of S. frugiperda fed on six crops, namely corn, sorghum, wheat, soybean, peanut, and cotton, were investigated under laboratory conditions. These crops are cultivated mainly in the mid-high latitude of China. Results showed that S. frugiperda was able to develop and reproduce on all six tested plants. Larvae reared on corn exhibited a significant shorter larval and pupal duration, higher pupal weight, and higher fecundity, which were 16.2 d, 8.9 d, 0.248 g, and 979.4 eggs per female, respectively. The host plant significantly affected relative growth, consumption, and metabolic rates, as well as other nutritional indices. Biology and nutritional indexes suggested that corn was the most suitable host. Besides, peanut, sorghum, and wheat have also been shown to be the suitable hosts for S. frugiperda. Although cotton and soybean were found to be less adequate, high larval and pupal survivors recorded on cotton and soybean leaves have indicated that damage may occur in these plants. This work reveals the damage risk of potential hosts of S. frugiperda, lays the foundation for the design of pest management strategies.


2017 ◽  
Vol 16 (3) ◽  
pp. 337
Author(s):  
LETÍCIA HELLWIG ◽  
ANDERSON DIONEI GRUTZMACHER ◽  
PATRÍCIA MARQUES DOS SANTOS ◽  
CALISC DE OLIVEIRA TRECHA ◽  
LAUREN BITTENCOURT MEDINA ◽  
...  

 RESUMO - A produção de milho tem sofrido grandes avanços, propiciando aumento de produtividade, no entanto, esta é diretamente afetada pelo ataque de insetos desde o plantio até a sua utilização. Neste contexto, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) é considerada o principal inseto-praga. Para a cultura do milho já existem níveis de controle definidos, entretanto, mesmo utilizando os já estabelecidos, ocorrem perdas na produção. Assim, o objetivo do estudo foi reavaliar o nível de dano de S. frugiperda em milho convencional BG7060, por meio de infestação artificial com diferentes densidades populacionais de lagartas (0, 1, 3, 5, 10, 15 e 20 lagartas planta-1) em plantas no estádio fenológico V4-V8 (folhas completamente expandidas) em condições de casa de vegetação. Os resultados obtidos evidenciaram que o aumento do número de lagartas de S. frugiperda por planta afeta todas as variáveis relacionadas à produtividade, exceto a altura de planta e comprimento da espiga, propiciando uma menor produtividade. Constatou-se que o nível de controle de S. frugiperda para o híbrido BG7060 no estádios V4-V8 é 29% de plantas atacadas em uma amostragem de 100 plantas, quando ocorre uma lagarta planta-1.Palavras-chave: nível de controle, monitoramento, manejo integrado de pragas, Zea mays L. LEVEL OF DAMAGE OF FALL ARMYWORM, Spodoptera frugiperda, IN CONVENTIONAL MAIZE IN GREENHOUSE CONDITIONS  ABSTRACT - The maize production has advanced considerably providing an increase in productivity, however, this is directly affected by the insect attack in all phases. In this context, the fall armyworm Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) is considered the main insect-pest. There is a control levels set for the maize production, however, using the level of control already established, production losses occur. In this sense, the purposes of the study was re-evaluate the level of damage of the S. frugiperda in conventional maize, BG7060, through artificial infestation with different populational densities (0, 1, 3, 5, 10, 15 and 20 caterpillars plant-1), of plants at V4-V8 phenological stage (fully expanded leaves) in green house conditions. The results obtained highlighted that the increase in the number of caterpillars of S. frugiperda by plant affects all variables related to productivity, except the plant height and length of the ear, providing a smaller productivity. It was found that the control level of S. frugiperda for the BG7060 maize for V4-V8 stage is 29% of attacked plants in a sample of 100 plants, when there is one caterpillar per plant.Keywords: level control, monitoring, integrated pest management, Zea mays L.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 512
Author(s):  
Albasini Caniço ◽  
António Mexia ◽  
Luisa Santos

The alien invasive insect pest Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), commonly referred to as fall armyworm (FAW), is causing significant losses to maize production in Africa since its detection in 2016. Despite being the primary insect pest of the main food crop in the country, researchers have concentrated their efforts on methods of control, and there are no published studies on its seasonality which could assist farmers in delivering effective methods of control in periods of heavy infestations. The primary goal of this study was to assess the seasonal dynamics of FAW in maize fields. We conducted a field survey from May to August 2019 (dry season of the 2018/2019 cropping season) and in December 2019 and January 2020 (rainy season of the 2019/2020 cropping season) in 622 maize fields. In each field, 20 plants were selected in a “W” pattern and checked for the presence of FAW egg masses and/or larvae. Plants were also assessed for damage. Preliminary results show increased infestation, damages, and population density of FAW in the dry season. Our results suggest that early planting of maize in the primary cropping season may significantly reduce the infestation and damage by FAW when compared to the dry season.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 430
Author(s):  
Sidol Houngbo ◽  
Afio Zannou ◽  
Augustin Aoudji ◽  
Hervé C. Sossou ◽  
Antonio Sinzogan ◽  
...  

Spodoptera frugiperda has caused significant losses of farmer income in sub-Saharan countries since 2016. This study assessed farmers’ knowledge of S. frugiperda, their perceptions and management practices in Benin. Data were collected through a national survey of 1237 maize farmers. Ninety-one point eight percent of farmers recognized S. frugiperda damage, 78.9% of them were able to identify its larvae, and 93.9% of the maize fields were infested. According to farmers, the perceived yield losses amounted to 797.2 kg/ha of maize, representing 49% of the average maize yield commonly obtained by farmers. Chi-square tests revealed that the severity of the pest attacks was significantly associated with cropping practices and types of grown maize varieties. About 16% of farmers identified francolin (Francolinus bicalcaratus), village weaver (Ploceus cucullatus), and common wasp (Vespula vulgaris) as natural enemies and 5% of them identified yellow nutsedge, chan, shea tree, neem, tamarind, and soybean as repellent plants of S. frugiperda. Most farmers (91.4%) used synthetic pesticides and 1.9% of them used botanical pesticides, which they found more effective than synthetic pesticides. Significant relationships exist between farmers’ management practices, their knowledge, organization membership, and contact with research and extension services. More research is required to further understand the effectiveness of botanical pesticides made by farmers against S. frugiperda and to refine them for scaling-up.


2020 ◽  
Author(s):  
Furong Gui ◽  
Tianming Lan ◽  
Yue Zhao ◽  
Wei Guo ◽  
Yang Dong ◽  
...  

Abstract The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared re-sequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 132
Author(s):  
Muhammad Hafeez ◽  
Xiaowei Li ◽  
Zhijun Zhang ◽  
Jun Huang ◽  
Likun Wang ◽  
...  

The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a polyphagous, invasive insect pest which causes significant losses in important crops wherever it has spread. The use of pesticides in agriculture is a key tool in the management of many important crop pests, including S. frugiperda, but continued use of insecticides has selected for various types of resistance, including enzyme systems that provide enhanced mechanisms of detoxification. In the present study, we analyzed the de novo transcriptome of S. frugiperda larvae exposed to Noposion Yihaogong® 5% emulsifiable concentrate (EC) insecticide focusing on detoxification genes and related pathways. Results showed that a total of 1819 differentially expressed genes (DEGs) were identified in larvae after being treated with Noposion Yihaogong® 5% EC insecticide, of which 863 were up- and 956 down-regulated. Majority of these differentially expressed genes were identified in numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including metabolism of xenobiotics and drug metabolism. Furthermore, many of S. frugiperda genes involved in detoxification pathways influenced by lambda-cyhalothrin stress support their predicted role by further co-expression network analysis. Our RT-qPCR results were consistent with the DEG’s data of transcriptome analysis. The comprehensive transcriptome sequence resource attained through this study enriches the genomic platform of S. frugiperda, and the identified DEGs may enable greater molecular underpinnings behind the insecticide-resistance mechanism caused by lambda-cyhalothrin.


Sign in / Sign up

Export Citation Format

Share Document