scholarly journals Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component

2021 ◽  
Author(s):  
Vincent Saderne ◽  
Marco Fusi ◽  
Timothy Thomson ◽  
Aislinn Dunne ◽  
Fatima Mahmud ◽  
...  
Author(s):  
Vincent Saderne ◽  
Marco Fusi ◽  
Timothy Thomson ◽  
Aislinn Dunne ◽  
Fatima Mahmud ◽  
...  

2021 ◽  
Author(s):  
Mary Zeller ◽  
Bryce Van Dam ◽  
Christian Lopes ◽  
Ashley Smyth ◽  
Michael Böttcher ◽  
...  

<p>Seagrasses are often considered important players in the global carbon cycle, due to their role in sequestering and protecting sedimentary organic matter as “Blue Carbon”.  However, in shallow calcifying systems the ultimate role of seagrass meadows as a sink or source of atmospheric CO<sub>2</sub> is complicated by carbonate precipitation and dissolution processes, which produce and consume CO<sub>2</sub>, respectively.  In general, microbial sulfate, iron, and nitrate reduction produce total alkalinity (TA), and the reverse reaction, the re-oxidation of the reduced species, consumes TA. Therefore, net production of TA only occurs when these reduced species are protected from re-oxidation, for example through the burial of FeS<sub>x</sub> or the escape of N<sub>2</sub>.  Seagrasses also affect benthic biogeochemistry by pumping O2 into the rhizosphere, which for example may allow for direct H2S oxidation.</p><p>Our study investigated the role of these factors and processes (seagrass density, sediment biogeochemistry, carbonate precipitation/dissolution, and ultimately air-sea CO<sub>2</sub> exchange), on CO<sub>2</sub> source-sink behavior in a shallow calcifying (carbonate content ~90%) seagrass meadow (Florida Bay, USA), dominated by Thalassia testudinum. We collected sediment cores from high and low seagrass density areas for flow through core incubations (N<sub>2</sub>, O<sub>2</sub>, DI<sup>13</sup>C, sulfide, DO<sup>13</sup>C flux), solid phase chemistry (metals, PO<sup>13</sup>C, Ca<sup>13</sup>C<sup>18</sup>O<sub>3</sub>, AVS: FeS + H<sub>2</sub>S, CRS: FeS<sub>2</sub> + S<sup>0</sup>), and porewater chemistry (major cations, DI<sup>13</sup>C, sulfide, <sup>34</sup>S<sup>18</sup>O<sub>4</sub>). An exciting aspect of this study is that it was conducted inside the footprint of an Eddy Covariance tower (air-sea CO<sub>2</sub> exchange), allowing us to directly link benthic processes with CO<sub>2</sub> sink-source dynamics.</p><p>During the course of our week long study, the seagrass meadow was a consistent source of CO<sub>2</sub> to the atmosphere (610 ± 990 µmol·m<sup>-2</sup>·hr<sup>-1</sup>).  Elevated porewater DIC near 15 cmbsf suggests rhizosphere O<sub>2</sub> induced carbonate dissolution, while consumption of DIC in the top 5-10 cm suggests reprecipitation.  With high seagrass density, enriched δ<sup>13</sup>C<sub>DIC </sub>in the DIC maximum zone (10-25 cm) suggests continual reworking of the carbonates through dissolution/precipitation processes towards more stable PIC, indicating that seagrasses can promote long-term stability of PIC.  We constructed a simple elemental budget, which suggests that net alkalinity consumption by ecosystem calcification explains >95% of the observed CO<sub>2</sub> emissions.  Net alkalinity production through net denitrification (and loss of N<sub>2</sub>) and net sulfate reduction (and subsequent burial of FeS<sub>2</sub> + S<sup>0</sup>), as well as observed organic carbon burial, could only minimally offset ecosystem calcification.   </p>


2020 ◽  
Vol 5 (1) ◽  
pp. 70-81
Author(s):  
Anang Kadarsah ◽  
Dafiuddin Salim ◽  
Sadang Husain ◽  
Marta Dinata

Its crucial to get information about lead (Pb) heavy metal pollution from mining and oil palm plantation on species density in mangrove ecosystem, to anticipate its impacts. This study aimed is to compare the types and densities of vegetation in mangrove ecosystems allegedly due to mining in Setarap village, Tanah Bumbu Regency and oil palm plantations in Kuala Tambangan Village, Tanah Laut Regency. We also analysis the condition of waters (TDS, pH and DO) and organic content in sediments to acquire data from the South Kalimantan mangrove ecosystems. The results showed there were four species of true mangroves (Avicennia alba, Acanthus ebracteatus, Nypa fruticans and Rhizophora apiculate) could live well in the environment affected by mining or oil palm plantations. The species density for trees was low (933 ind/ha) for mangroves affected by coal mines, while those affected by oil palm plantations had higher densities (1,067 ind/ha). pH value of waters in affected area by coal mining showed more acidic value (pH 5.76) especially at the back, while those by palm oil plantations are more acidic (pH 6) in the estuary. Organic matter content in sediments affected by coal mines was in the range of 0.61-6.59%, while those affected by oil palm plantations showed higher values (0.12-2.19%). Lead heavy metal content (Pb) in waters affected by coal mines was 0.031-0.056 mg/L, while the area affected by oil palm plantations was of higher value (0.110-0.128 mg/L). Lead (Pb) levels in sediments indicate higher values than waters, which reach 3.512-6.046 mg/Kg (affected by coal mines), and in areas affected by oil palm plantations reaching 6.658-6.66 mg/Kg. The general conclusion is that vegetation densities in areas affected by coal mines are lower than oil palm plantations. The level of lead  (Pb) pollution in the sediments is higher than in the waters.


Jurnal Segara ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. 111
Author(s):  
Dini Purbani ◽  
M. Boer ◽  
Marimin . ◽  
I Wayan Nurjaya ◽  
F. Yulianda
Keyword(s):  

Jurnal Segara ◽  
2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Agustin Rustam ◽  
Terry L. Kepel ◽  
Restu Nur Afiati ◽  
Hadiwijaya L. Salim ◽  
Mariska Astrid ◽  
...  
Keyword(s):  

1992 ◽  
Author(s):  
A. STRIZ ◽  
G. CRUSE ◽  
R. KLINE ◽  
E. MADARAS

2019 ◽  
Vol 5 ◽  
pp. 104
Author(s):  
Suhendra Purnawan ◽  
Subari Yanto ◽  
Ernawati S.Kaseng

This study aims to describe the profile of vegetation diversity in the mangrove ecosystem in Tamuku Village, Bone-Bone-Bone District, North Luwu Regency. This research is a qualitative research using survey methods. The data collection technique uses the Quadrant Line Transect Survey technique. The data analysis technique uses the thinking flow which is divided into three stages, namely describing phenomena, classifying them, and seeing how the concepts that emerge are related to each other. The results of this study are the profile of mangrove vegetation in Tamuku Village, which is still found 16 varieties of true mangrove vegetation and 7 varieties of mangrove vegetation joined in the coastal area of Tamuku Village, Bone-Bone District, North Luwu Regency, South Sulawesi. The condition of mangrove vegetation in Tamuku Village is currently very worrying due to human activities that cause damage such as the project of normalization of flow, opening of new farms, disposal of garbage, water pollution due to chemicals, and exploitation of mangrove forests for living needs. The impact is ecosystem damage and reduced vegetation area as a place to grow and develop mangroves.


Sign in / Sign up

Export Citation Format

Share Document