When “Blue Carbon” turns white: Isotopic evidence of calcification-driven CO2 emissions in a carbonate seagrass meadow

Author(s):  
Mary Zeller ◽  
Bryce Van Dam ◽  
Christian Lopes ◽  
Ashley Smyth ◽  
Michael Böttcher ◽  
...  

<p>Seagrasses are often considered important players in the global carbon cycle, due to their role in sequestering and protecting sedimentary organic matter as “Blue Carbon”.  However, in shallow calcifying systems the ultimate role of seagrass meadows as a sink or source of atmospheric CO<sub>2</sub> is complicated by carbonate precipitation and dissolution processes, which produce and consume CO<sub>2</sub>, respectively.  In general, microbial sulfate, iron, and nitrate reduction produce total alkalinity (TA), and the reverse reaction, the re-oxidation of the reduced species, consumes TA. Therefore, net production of TA only occurs when these reduced species are protected from re-oxidation, for example through the burial of FeS<sub>x</sub> or the escape of N<sub>2</sub>.  Seagrasses also affect benthic biogeochemistry by pumping O2 into the rhizosphere, which for example may allow for direct H2S oxidation.</p><p>Our study investigated the role of these factors and processes (seagrass density, sediment biogeochemistry, carbonate precipitation/dissolution, and ultimately air-sea CO<sub>2</sub> exchange), on CO<sub>2</sub> source-sink behavior in a shallow calcifying (carbonate content ~90%) seagrass meadow (Florida Bay, USA), dominated by Thalassia testudinum. We collected sediment cores from high and low seagrass density areas for flow through core incubations (N<sub>2</sub>, O<sub>2</sub>, DI<sup>13</sup>C, sulfide, DO<sup>13</sup>C flux), solid phase chemistry (metals, PO<sup>13</sup>C, Ca<sup>13</sup>C<sup>18</sup>O<sub>3</sub>, AVS: FeS + H<sub>2</sub>S, CRS: FeS<sub>2</sub> + S<sup>0</sup>), and porewater chemistry (major cations, DI<sup>13</sup>C, sulfide, <sup>34</sup>S<sup>18</sup>O<sub>4</sub>). An exciting aspect of this study is that it was conducted inside the footprint of an Eddy Covariance tower (air-sea CO<sub>2</sub> exchange), allowing us to directly link benthic processes with CO<sub>2</sub> sink-source dynamics.</p><p>During the course of our week long study, the seagrass meadow was a consistent source of CO<sub>2</sub> to the atmosphere (610 ± 990 µmol·m<sup>-2</sup>·hr<sup>-1</sup>).  Elevated porewater DIC near 15 cmbsf suggests rhizosphere O<sub>2</sub> induced carbonate dissolution, while consumption of DIC in the top 5-10 cm suggests reprecipitation.  With high seagrass density, enriched δ<sup>13</sup>C<sub>DIC </sub>in the DIC maximum zone (10-25 cm) suggests continual reworking of the carbonates through dissolution/precipitation processes towards more stable PIC, indicating that seagrasses can promote long-term stability of PIC.  We constructed a simple elemental budget, which suggests that net alkalinity consumption by ecosystem calcification explains >95% of the observed CO<sub>2</sub> emissions.  Net alkalinity production through net denitrification (and loss of N<sub>2</sub>) and net sulfate reduction (and subsequent burial of FeS<sub>2</sub> + S<sup>0</sup>), as well as observed organic carbon burial, could only minimally offset ecosystem calcification.   </p>

2021 ◽  
Author(s):  
Bryce Van Dam ◽  
Mary Zeller ◽  
Christian Lopes ◽  
Ashley Smyth ◽  
Michael Böttcher ◽  
...  

Abstract Long-term “blue carbon” burial in seagrass meadows is complicated by other carbon and alkalinity exchanges that shape net carbon sequestration. We measured a suite of such processes, including denitrification, sulfur, and inorganic carbon cycling, and assessed their impact on air-water carbon dioxide exchange in a typical seagrass meadow underlain by carbonate sediments. Contrary to the prevailing concept of seagrass meadows acting as carbon sinks, eddy covariance measurements reveal this ecosystem as a consistent source of carbon dioxide to the atmosphere, at an average rate of 610 ± 990 µmol m-2 hr-1 during our study and 700 ± 660 µmol m-2 hr-1 over an annual cycle. A robust mass-balance shows that net alkalinity consumption by ecosystem calcification explains >95% of the observed carbon dioxide emissions, far exceeding alkalinity generated by net reduced sulfur, iron and organic carbon burial. Isotope geochemistry of porewaters suggests substantial dissolution and re-crystallization of more stable carbonates mediated by sulfide oxidation-induced acidification, enhancing long-term carbonate burial and ultimate carbon dioxide production. We show that the “blue carbon” sequestration potential of calcifying seagrass meadows has been over-estimated, and that in-situ organic carbon burial only offsets a small fraction (<5%) of calcification-induced CO2 emissions. Ocean-based climate change mitigation activities in such calcifying regions should be approached with caution and an understanding that net carbon sequestration may not be possible.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna L. Luff ◽  
Emma V. Sheehan ◽  
Mark Parry ◽  
Nicholas D. Higgs

AbstractMoorings can have a detrimental impact on seagrass, fragmenting the meadows, resulting in the habitat degradation. To reduce contact of the moorings with the seabed we attached small floats along the chain of a traditional swing mooring and monitored the ecological impacts of this modified mooring, with reference to a standard swing mooring, in a seagrass meadow under high tidal influence. After three years, seagrass density surrounding the modified mooring was over twice as high as that of the standard mooring, with blade length surrounding the modified mooring also found to exceed that of the standard mooring. Seagrass-associated epifaunal species richness was twice as high surrounding the modified mooring compared to the standard mooring. Sediment composition was considerably finer at the modified mooring, indicative of increased disturbance surrounding the standard mooring. A simple modification to existing swing moorings can mitigate some of the impacts of moorings on seagrass meadows, whilst accommodating for tidal fluctuations. The scale of the differences observed between the mooring types demonstrates the susceptibility of seagrass meadows to damage from swing moorings. Given the ecological importance of these habitats, it is crucial that action is taken to reduce further degradation, such as that demonstrated here.


2019 ◽  
Author(s):  
Kimberlee Baldry ◽  
Vincent Saderne ◽  
Daniel C. McCorkle ◽  
James H. Churchill ◽  
Susana Agusti ◽  
...  

Abstract. We use observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) to assess the impact of ecosystem metabolic processes on coastal waters of the eastern Red Sea. A simple, single-end-member mixing model is used to account for the influence of mixing with offshore waters and evaporation/precipitation, and to model ecosystem-driven perturbations on the carbonate system chemistry of coral reefs, seagrass meadows and mangrove forests. We find that (1) along-shelf changes in TA and DIC exhibit strong linear trends that are consistent with basin-scale net calcium carbonate precipitation; (2) ecosystem-driven changes in TA and DIC are larger than offshore variations in > 85 % of sampled seagrass meadows and mangrove forests, changes which are influenced by a combination of longer water residence times and community metabolic rates; and (3) the sampled mangrove forests show strong and consistent contributions from both organic respiration and other sedimentary processes (carbonate dissolution and secondary redox processes), while seagrass meadows display more variability in the relative contributions of photosynthesis and other sedimentary processes (carbonate precipitation and oxidative processes).


2020 ◽  
Vol 17 (2) ◽  
pp. 423-439
Author(s):  
Kimberlee Baldry ◽  
Vincent Saderne ◽  
Daniel C. McCorkle ◽  
James H. Churchill ◽  
Susana Agusti ◽  
...  

Abstract. We use observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) to assess the impact of ecosystem metabolic processes on coastal waters of the eastern Red Sea. A simple, single-end-member mixing model is used to account for the influence of mixing with offshore waters and evaporation–precipitation and to model ecosystem-driven perturbations on the carbonate system chemistry of coral reefs, seagrass meadows and mangrove forests. We find that (1) along-shelf changes in TA and DIC exhibit strong linear relationships that are consistent with basin-scale net calcium carbonate precipitation; (2) ecosystem-driven changes in TA and DIC are larger than offshore variations in >70 % of sampled seagrass meadows and mangrove forests, changes which are influenced by a combination of longer water residence times and community metabolic rates; and (3) the sampled mangrove forests show strong and consistent contributions from both organic respiration and other sedimentary processes (carbonate dissolution and secondary redox processes), while seagrass meadows display more variability in the relative contributions of photosynthesis and other sedimentary processes (carbonate precipitation and oxidative processes). The results of this study highlight the importance of resolving the influences of water residence times, mixing and upstream habitats on mediating the carbonate system and coastal air–sea carbon dioxide fluxes over coastal habitats in the Red Sea.


2019 ◽  
Vol 6 (2) ◽  
pp. 132-136 ◽  
Author(s):  
Nur Hidayah ◽  
Siti Aishah Tahirin ◽  
Mohammad Fairoz ◽  
Mohammad Rozaimi

Seagrass ecosystems are considered as major blue carbon sinks, thus contributing directly to the mitigation of climate change by storing carbon in their habitats. However, empirical data for carbon stocks in Malaysia seagrass meadow sediment remain unreported in a standardised format. This paper presents data on organic (OC) and inorganic carbon (IC) stocks, and stable isotope signatures of carbon (?13C) in bulk seagrass sediments collected from Sungai Pulai estuary (Johor, Malaysia). Within this estuary, seagrasses form shoals at Tanjung Adang and Merambong. Organic carbon and ?13C values in bulk sediment were analysed by an elemental analyser and a continuous flow isotope-ratio mass spectrometer, respectively, while sediment IC data was derived from loss-on-ignition calculations of sample mass differences. The data from these samples are presented as downcore profile of OC (values range at 0.14% to 2.49%), IC (0.16% to 5.29%), ?13C values of organic matter (-27.9‰ to -20.4‰), and cumulative carbon stocks (1.03-3.39 kg OC m-2 and 0.76-2.84 kg IC m-2) in the top 30 cm of sediments. This dataset is applicable for regional and local blue carbon studies, which would allow insights into carbon sink and carbon cycling capacity, in addition to gaining insights into the provenances of carbon stored in seagrass meadows.


Author(s):  
David L. Kirchman

Geomicrobiology, the marriage of geology and microbiology, is about the impact of microbes on Earth materials in terrestrial systems and sediments. Many geomicrobiological processes occur over long timescales. Even the slow growth and low activity of microbes, however, have big effects when added up over millennia. After reviewing the basics of bacteria–surface interactions, the chapter moves on to discussing biomineralization, which is the microbially mediated formation of solid minerals from soluble ions. The role of microbes can vary from merely providing passive surfaces for mineral formation, to active control of the entire precipitation process. The formation of carbonate-containing minerals by coccolithophorids and other marine organisms is especially important because of the role of these minerals in the carbon cycle. Iron minerals can be formed by chemolithoautotrophic bacteria, which gain a small amount of energy from iron oxidation. Similarly, manganese-rich minerals are formed during manganese oxidation, although how this reaction benefits microbes is unclear. These minerals and others give geologists and geomicrobiologists clues about early life on Earth. In addition to forming minerals, microbes help to dissolve them, a process called weathering. Microbes contribute to weathering and mineral dissolution through several mechanisms: production of protons (acidity) or hydroxides that dissolve minerals; production of ligands that chelate metals in minerals thereby breaking up the solid phase; and direct reduction of mineral-bound metals to more soluble forms. The chapter ends with some comments about the role of microbes in degrading oil and other fossil fuels.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 503
Author(s):  
Jaehyun Lee ◽  
Ehsan Esmaili ◽  
Giho Kang ◽  
Baekhoon Seong ◽  
Hosung Kang ◽  
...  

The dimple occurs by sudden pressure inversion at the droplet’s bottom interface when a droplet collides with the same liquid-phase or different solid-phase. The air film entrapped inside the dimple is a critical factor affecting the sequential dynamics after coalescence and causing defects like the pinhole. Meanwhile, in the coalescence dynamics of an electrified droplet, the droplet’s bottom interfaces change to a conical shape, and droplet contact the substrate directly without dimple formation. In this work, the mechanism for the dimple’s suppression (interfacial change to conical shape) was studied investigating the effect of electric pressure. The electric stress acting on a droplet interface shows the nonlinear electric pressure adding to the uniform droplet pressure. This electric stress locally deforms the droplet’s bottom interface to a conical shape and consequentially enables it to overcome the air pressure beneath the droplet. The electric pressure, calculated from numerical tracking for interface and electrostatic simulation, was at least 108 times bigger than the air pressure at the center of the coalescence. This work helps toward understanding the effect of electric stress on droplet coalescence and in the optimization of conditions in solution-based techniques like printing and coating.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charalampos Konstantinou ◽  
Yuze Wang ◽  
Giovanna Biscontin ◽  
Kenichi Soga

AbstractProtocols for microbially induced carbonate precipitation (MICP) have been extensively studied in the literature to optimise the process with regard to the amount of injected chemicals, the ratio of urea to calcium chloride, the method of injection and injection intervals, and the population of the bacteria, usually using fine- to medium-grained poorly graded sands. This study assesses the effect of varying urease activities, which have not been studied systematically, and population densities of the bacteria on the uniformity of cementation in very coarse sands (considered poor candidates for treatment). A procedure for producing bacteria with the desired urease activities was developed and qPCR tests were conducted to measure the counts of the RNA of the Ure-C genes. Sand biocementaton experiments followed, showing that slower rates of MICP reactions promote more effective and uniform cementation. Lowering urease activity, in particular, results in progressively more uniformly cemented samples and it is proven to be effective enough when its value is less than 10 mmol/L/h. The work presented highlights the importance of urease activity in controlling the quality and quantity of calcium carbonate cements.


Sign in / Sign up

Export Citation Format

Share Document