scholarly journals The concentration of organic compounds in high-pH waters of serpentinizing environments determined by 1H NMR: continental sites (Oman, Liguria, New Caledonia, Portugal) and a marine environment (Marianna mud volcanoes: IODP Exp 366, ODP Legs 125 and 195)

2021 ◽  
Author(s):  
Christophe Monnin ◽  
Olivier Sissmann ◽  
Gilles Berger ◽  
Marianne Quéméneur ◽  
Roy Price ◽  
...  
2014 ◽  
Vol 11 (20) ◽  
pp. 5687-5706 ◽  
Author(s):  
C. Monnin ◽  
V. Chavagnac ◽  
C. Boulart ◽  
B. Ménez ◽  
M. Gérard ◽  
...  

Abstract. The terrestrial hyperalkaline springs of Prony Bay (southern lagoon, New Caledonia) have been known since the nineteenth century, but a recent high-resolution bathymetric survey of the seafloor has revealed the existence of numerous submarine structures similar to the well-known Aiguille de Prony, which are also the location of high-pH fluid discharge into the lagoon. During the HYDROPRONY cruise (28 October to 13 November 2011), samples of waters, gases and concretions were collected by scuba divers at underwater vents. Four of these sampling sites are located in Prony Bay at depths up to 50 m. One (Bain des Japonais spring) is also in Prony Bay but uncovered at low tide and another (Rivière des Kaoris spring) is on land slightly above the seawater level at high tide. We report the chemical composition (Na, K, Ca, Mg, Cl, SO4, dissolved inorganic carbon, SiO2(aq)) of 45 water samples collected at six sites of high-pH water discharge, as well as the composition of gases. Temperatures reach 37 °C at the Bain des Japonais and 32 °C at the spring of the Kaoris. Gas bubbling was observed only at these two springs. The emitted gases contain between 12 and 30% of hydrogen in volume of dry gas, 6 to 14% of methane, and 56 to 72% of nitrogen, with trace amounts of carbon dioxide, ethane and propane. pH values and salinities of all the 45 collected water samples range from the seawater values (8.2 and 35 g L−1) to hyperalkaline freshwaters of the Ca-OH type (pH 11 and salinities as low as 0.3 g L−1) showing that the collected samples are always a mixture of a hyperalkaline fluid of meteoric origin and ambient seawater. Cl-normalized concentrations of dissolved major elements first show that the Bain des Japonais is distinct from the other sites. Water collected at this site are three component mixtures involving the high-pH fluid, the lagoon seawater and the river water from the nearby Rivière du Carénage. The chemical compositions of the hyperalkaline endmembers (at pH 11) are not significantly different from one site to the other although the sites are several kilometres away from each other and are located on different ultramafic substrata. The very low salinity of the hyperalkaline endmembers shows that seawater does not percolate through the ultramafic formation. Mixing of the hyperalkaline hydrothermal endmember with local seawater produces large ranges and very sharp gradients of pH, salinity and dissolved element concentrations. There is a major change in the composition of the water samples at a pH around 10, which delimitates the marine environment from the hyperalkaline environment. The redox potential evolves toward negative values at high pH indicative of the reducing conditions due to bubbling of the H2-rich gas. The calculation of the mineral saturation states carried out for the Na-K-Ca-Mg-Cl-SO4-DIC-SiO2-H2O system shows that this change is due to the onset of brucite formation. While the saturation state of the Ca carbonates over the whole pH range is typical of that found in a normal marine environment, Mg- and Mg-Ca carbonates (magnesite, hydromagnesite, huntite, dolomite) exhibit very large supersaturations with maximum values at a pH of around 10, very well marked for the Bain des Japonais, emphasizing the role of water mixing in mineral formation. The discharge of high-pH waters of meteoric origin into the lagoon marine environment makes the hydrothermal system of Prony Bay unique compared to other low temperature serpentinizing environments such as Oman (fully continental) or Lost City (fully marine).


2014 ◽  
Vol 11 (4) ◽  
pp. 6221-6267 ◽  
Author(s):  
C. Monnin ◽  
V. Chavagnac ◽  
C. Boulart ◽  
B. Ménez ◽  
M. Gérard ◽  
...  

Abstract. The terrestrial hyperalkaline springs of the Prony bay (southern lagoon, New Caledonia) have been known since the XIXth century, but a recent high resolution bathymetric survey of the seafloor has revealed the existence of numerous submarine structures similar to the well-known Aiguille de Prony, which are also the location of high pH fluid discharge into the lagoon. During the HYDROPRONY cruise (28 October to 13 November 2011) samples of waters, gases and concretions have been collected by scuba divers at underwater vents. Four of these sampling sites are located in the Prony bay at depths up to 50 m. One (Bain des Japonais spring) is also in the Prony Bay but uncovered at low tide and another (Rivière des Kaoris spring) is on land slightly above the seawater level at high tide. We report the chemical composition (Na, K, Ca, Mg, Cl, SO4, Dissolved Inorganic Carbon, SiO2(aq)) of 45 water samples collected at 6 sites of high pH water discharge, as well as the composition of gases. Temperatures reach 37 °C at the Bain des Japonais and 32 °C at the spring of the Kaoris. Gas bubbling was observed only at these two springs. The emitted gases contain between 12 and 30% of hydrogen in volume of dry gas, 6 to 14% of methane, and 56 to 72% of nitrogen, with trace amounts of carbon dioxide, ethane and propane. pH values and salinities of all the 45 collected water samples range from the seawater values (8.2 and 35 g L−1) to hyperalkaline freshwaters of the Ca-OH type (pH 11 and salinities as low as 0.3 g L−1) showing that the collected samples are always a mixture of a hyperalkaline fluid of meteoric origin and ambient seawater. Cl-normalized concentrations of dissolved major elements first show that the Bain des Japonais is distinct from the other sites. Waters collected at this site are three component mixtures involving the high pH fluid, the lagoon seawater and the river water from the nearby Rivière du Carénage. The chemical compositions of the hyperalkaline end members (at pH 11) are not significantly different from one site to the other although the sites are several km away from each other and are located on different ultramafic substrata. The very low salinity of the hyperalkaline end members shows that seawater does not percolate through the ultramafic formation. Mixing of the hyperalkaline hydrothermal end member with local seawater produces large ranges and very sharp gradients of pH, salinity and dissolved element concentrations. There is a major change in the composition of the water samples at a pH around 10, which delimitates the marine environment from the hyperalkaline environment. The redox potential evolves toward negative values at high pH indicative of the reducing conditions due to bubbling of the H2-rich gas. The calculation of the mineral saturation states carried out for the Na-K-Ca-Mg-Cl-SO4-DIC-SiO2-H2O system shows that this change is due to the onset of brucite formation. While the saturation state of the Ca-carbonates over the whole pH range is typical of that found in a normal marine environment, Mg- and Mg-Ca-carbonates (magnesite, hydromagnesite, huntite, dolomite) exhibit very large supersaturations with maximum values at pH around 10, very well marked for the Bain des Japonais, emphasizing the role of water mixing in mineral formation. The discharge of high pH waters of meteoric origin into the lagoon marine environment makes the hydrothermal system of the Prony bay unique compared to other low temperature serpentinizing environments such as Oman (fully continental) or Lost City (fully marine).


2002 ◽  
Vol 45 (1-12) ◽  
pp. 62-68 ◽  
Author(s):  
Michael R Moore ◽  
Walter Vetter ◽  
Caroline Gaus ◽  
Glen R Shaw ◽  
Jochen F Müller

2013 ◽  
Vol 646 ◽  
pp. 24-29 ◽  
Author(s):  
Jian Xin Yang ◽  
Cheng Hang You ◽  
Xiang Hui Wang ◽  
Qiang Lin

Twenty-one novel compounds were synthesized from the benzo[d]isothiazole-3(2H)-one and aromatic acid, the structures were identified by means of 1H NMR, IR, EA. The intro antibacterial experiment was carried out to evaluate the activities against antibacterial and the marine hanging plate experiment was also carried out to evaluate the activities against marine fouling organism. The results showed that all the compounds were active against the six bacterials, with an inhibiting rate of 90% at the concentration of 32 µg/ml against Gram-positive bacterials, and the antifouling paints couldn’t be attached by marine fouling organisms in the marine environment for more than 3 months.


2000 ◽  
Vol 14 (3) ◽  
pp. 327 ◽  
Author(s):  
Nils Møller Andersen ◽  
Tom A. Weir

Semiaquatic bugs (Heteroptera, infraorder Gerromorpha) are distributed worldwide with approximately 1,600 described species. Most species live in various types of freshwater habitats, but a little more than 10% have colonised the marine environment. The Australian fauna constitutes a significantly higher percentage of marine species (about 25%) than in any other continent. Among these are the coral treaders, Hermatobates Carpenter, belonging to the Hermatobatidae, one of very few insect families that only include marine species. In this paper the two species of Hermatobates previously known from Australia are redescribed and H. armatus, sp. nov. from the Chesterfield Islands in the Coral Sea is added. The distribution of species known from Australia and New Caledonia is mapped, and a revised key to the eight species currently recognised in the genus is presented. Finally, the available knowledge about the biology and ecology of coral treaders is reviewed and discussed.


Hydrobiologia ◽  
1984 ◽  
Vol 116-117 (1) ◽  
pp. 187-189 ◽  
Author(s):  
S. Bonotto ◽  
G. Arapis ◽  
J. Mellet ◽  
D. Hoursiangou-Neubrun ◽  
F. Cinelli ◽  
...  

2001 ◽  
Vol 35 (13) ◽  
pp. 2656-2664 ◽  
Author(s):  
Yukio Suzuki ◽  
Masaru Kawakami ◽  
Kazuyuki Akasaka

2021 ◽  
Vol 21 (17) ◽  
pp. 13187-13205
Author(s):  
Tao Cao ◽  
Meiju Li ◽  
Chunlin Zou ◽  
Xingjun Fan ◽  
Jianzhong Song ◽  
...  

Abstract. Biomass burning (BB) and coal combustion (CC) are important sources of brown carbon (BrC) in ambient aerosols. In this study, six biomass materials and five types of coal were combusted to generate fine smoke particles. The BrC fractions, including water-soluble organic carbon (WSOC), humic-like substance carbon (HULIS-C), and methanol-soluble organic carbon (MSOC), were subsequently fractionated, and their optical properties and chemical structures were then comprehensively investigated using UV–visible spectroscopy, proton nuclear magnetic resonance spectroscopy (1H NMR), and fluorescence excitation–emission matrix (EEM) spectroscopy combined with parallel factor (PARAFAC) analysis. In addition, the oxidative potential (OP) of BB and CC BrC was measured with the dithiothreitol (DTT) method. The results showed that WSOC, HULIS-C, and MSOC accounted for 2.3 %–22 %, 0.5 %–10 %, and 6.4 %–73 % of the total mass of combustion-derived smoke PM2.5, respectively, with MSOC extracting the highest concentrations of organic compounds. The MSOC fractions had the highest light absorption capacity (mass absorption efficiency at 365 nm (MAE365): 1.0–2.7 m2/gC) for both BB and CC smoke, indicating that MSOC contained more of the strong light-absorbing components. Therefore, MSOC may represent the total BrC better than the water-soluble fractions. Some significant differences were observed between the BrC fractions emitted from BB and CC with more water-soluble BrC fractions with higher MAE365 and lower absorption Ångström exponent values detected in smoke emitted from BB than from CC. EEM-PARAFAC identified four fluorophores: two protein-like, one humic-like, and one polyphenol-like fluorophores. The protein-like substances were the dominant components of WSOC (47 %–80 %), HULIS-C (44 %–87 %), and MSOC (42 %–70 %). The 1H-NMR results suggested that BB BrC contained more oxygenated aliphatic functional groups (H-C-O), whereas CC BrC contained more unsaturated fractions (H-C-C= and Ar−H). The DTT assays indicated that BB BrC generally had a stronger oxidative potential (DTTm, 2.6–85 pmol/min/µg) than CC BrC (DTTm, 0.4–11 pmol/min/µg), with MSOC having a stronger OP than WSOC and HULIS-C. In addition, HULIS-C contributed more than half of the DTT activity of WSOC (63.1 % ± 15.5 %), highlighting that HULIS was a major contributor of reactive oxygen species (ROS) production in WSOC. Furthermore, the principal component analysis and Pearson correlation coefficients indicated that highly oxygenated humic-like fluorophore C4 may be the important DTT active substances in BrC.


Sign in / Sign up

Export Citation Format

Share Document