antifouling paints
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 41)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Vol 301 ◽  
pp. 113895
Author(s):  
Lucas Schröder ◽  
Ferdinand Hellweger ◽  
Anke Putschew

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 32
Author(s):  
Maxence Quémener ◽  
Stefanos Kikionis ◽  
Marilyne Fauchon ◽  
Yannick Toueix ◽  
Fanny Aulanier ◽  
...  

Nowadays, biofouling is responsible for enormous economic losses in the maritime sector, and its treatment with conventional antifouling paints is causing significant problems to the environment. Biomimetism and green chemistry approaches are very promising research strategies for the discovery of new antifouling compounds. This study focused on the red alga Sphaerococcus coronopifolius, which is known as a producer of bioactive secondary metabolites. Fifteen compounds, including bromosphaerol (1), were tested against key marine biofoulers (five marine bacteria and three microalgae) and two enzymes associated with the adhesion process in macroalgae and invertebrates. Each metabolite presented antifouling activity against at least one organism/enzyme. This investigation also revealed that two compounds, sphaerococcinol A (4) and 14R-hydroxy-13,14-dihydro-sphaerococcinol A (5), were the most potent compounds without toxicity towards oyster larvae used as non-target organisms. These compounds are of high potential as they are active towards key biofoulers and could be produced by a cultivable alga, a fact that is important from the green chemistry point of view.


2021 ◽  
Author(s):  
◽  
Hannah Robinson

<p>Marine biofouling is the accumulation of biological material (e.g. microorganisms, soft- and hard-fouling organisms) on the surface of an object submerged in seawater, and it remains a worldwide problem for shipping industries. The fouling of ship hulls results in a reduction of speed and manoeuvrability due to frictional drag, as well as increased fuel consumption and accelerated corrosion, and the exorbitant expenses and losses of efficiency attributed to biofouling have prompted the development of antifouling coatings. Current antifouling paints use copper as a biocidal agent, but copper-based paints are increasingly being banned due to environmental concerns about the non-target effects of leached copper. This project aims to circumvent these concerns and tightening regulations via a revolutionary concept: the development of marine antifouling paints that incorporate Cu(II)-selective ligands to draw the biocidal ingredient (i.e. Cu(II)) from seawater. A multistage strategy emerged for the development of this technology. First, criteria were established for the project’s ideal ligand, and ligands were synthesised or selected based on these criteria. Second, the ligands were incorporated in coatings through covalent modification of the paint binder or additives. Third, methodology was developed and implemented to test each coating’s ability to coordinate and retain Cu(II), as well as its subsequent ability to prevent microfouling by marine bacteria.   The suitability of two ligand classes was assessed: acylhydrazones and tetraaza macrocycles, specifically cyclen. Unlike the acylhydrazones, cyclen met the established criteria and was initially evaluated as a curing agent and/or surface-modifier in a two-pack epoxy system with resin Epikote™ 235. However, the Cu(II)-loading by these coatings was relatively low, being at most ~0.05% w/w, and the modification of silica, a common paint additive, with cyclen was explored as an alternative formulation route. The method for the functionalisation of silica with cyclen was optimised, and the maximum Cu(II)-loading achieved by the product was 2.60% w/w. The cyclen-functionalised silica was incorporated on the surface of an epoxy coating, and a bacterial adherence assay was developed to assess the cellular attachment of marine bacterium Vibrio harveyi to this coating, which was found to be undeterred. Yet, the development of the strategy and testing methodology by which the project’s goals may be achieved provides a solid foundation for future work.</p>


2021 ◽  
Author(s):  
◽  
Hannah Robinson

<p>Marine biofouling is the accumulation of biological material (e.g. microorganisms, soft- and hard-fouling organisms) on the surface of an object submerged in seawater, and it remains a worldwide problem for shipping industries. The fouling of ship hulls results in a reduction of speed and manoeuvrability due to frictional drag, as well as increased fuel consumption and accelerated corrosion, and the exorbitant expenses and losses of efficiency attributed to biofouling have prompted the development of antifouling coatings. Current antifouling paints use copper as a biocidal agent, but copper-based paints are increasingly being banned due to environmental concerns about the non-target effects of leached copper. This project aims to circumvent these concerns and tightening regulations via a revolutionary concept: the development of marine antifouling paints that incorporate Cu(II)-selective ligands to draw the biocidal ingredient (i.e. Cu(II)) from seawater. A multistage strategy emerged for the development of this technology. First, criteria were established for the project’s ideal ligand, and ligands were synthesised or selected based on these criteria. Second, the ligands were incorporated in coatings through covalent modification of the paint binder or additives. Third, methodology was developed and implemented to test each coating’s ability to coordinate and retain Cu(II), as well as its subsequent ability to prevent microfouling by marine bacteria.   The suitability of two ligand classes was assessed: acylhydrazones and tetraaza macrocycles, specifically cyclen. Unlike the acylhydrazones, cyclen met the established criteria and was initially evaluated as a curing agent and/or surface-modifier in a two-pack epoxy system with resin Epikote™ 235. However, the Cu(II)-loading by these coatings was relatively low, being at most ~0.05% w/w, and the modification of silica, a common paint additive, with cyclen was explored as an alternative formulation route. The method for the functionalisation of silica with cyclen was optimised, and the maximum Cu(II)-loading achieved by the product was 2.60% w/w. The cyclen-functionalised silica was incorporated on the surface of an epoxy coating, and a bacterial adherence assay was developed to assess the cellular attachment of marine bacterium Vibrio harveyi to this coating, which was found to be undeterred. Yet, the development of the strategy and testing methodology by which the project’s goals may be achieved provides a solid foundation for future work.</p>


2021 ◽  
Author(s):  
Francesca Cima ◽  
Roberta Varello

Abstract In recent years, after the ban on tributyltin (TBT)-based antifouling paints, copper-based paints have become the main coatings for boat hulls due to their efficiency and endurance. Copper(I) compounds like Cu2O and CuSCN are used alone or in combination with booster biocides, i.e. Irgarol 1051, chlorothalonil and dichlofluanid. The expanded use of these paints has increased copper leaching into coastal environments, requiring attention and legislative restrictions for potential long-term effects on benthic populations. This study monitored the ecological succession of macrofouling communities on wooden and stainless steel panels immersed for 10 months in the southern basin of the Lagoon of Venice. The development of macrofouling communities on the panels coated with copper-containing antifouling paints was compared with those on the reference (uncoated) and TBT-coated panels. Series of biodiversity descriptors highlighted the preventing activity of the antifouling paints. The most active paints were those containing booster biocides and with self-polishing copolymers in the matrix. The macrofouling communities appeared dissimilar to those on the reference uncoated panels as regards the species richness, the coverage areas, and the biocoenosis structure. Generally, green algae, bryozoans and barnacles were the most tolerant taxa and a negative species selection occurred for sponges, serpulids and ascidians.


2021 ◽  
Vol 11 (18) ◽  
pp. 8277
Author(s):  
Sergey Dobretsov ◽  
Hanaa Al-Shibli ◽  
Sajeewa S. N. Maharachchikumbura ◽  
Abdullah M. Al-Sadi

Marine biofouling is undesirable growth on submerged substances, which causes a major problem for maritime industries. Antifouling paints containing toxic compounds such as copper are used to prevent marine biofouling. However, bacteria and diatoms are usually found in biofilms developed on such paints. In this study, plastic panels painted with a copper-based self-polishing antifouling paint were exposed to biofouling for 6 months in the Marina Bandar Rowdha, Sea of Oman. Clean panels were used as a control substratum. Marine filamentous fungi from protected and unprotected substrate were isolated on a potato dextrose agar. Pure isolates were identified using sequences of the ITS region of rDNA. Six fungal isolates (Alternaria sp., Aspergillus niger, A. terreus, A. tubingensis, Cladosporium halotolerans, and C. omanense) were obtained from the antifouling paint. Four isolates (Aspergillus pseudodeflectus, C. omanense, and Parengyodontium album) were isolated from clean panels and nylon ropes. This is the first evidence of the presence of marine fungi on antifouling paints. In comparison with isolates from the unprotected substrate, fungi from the antifouling paint were highly resistant to copper, which suggests that filamentous fungi can grow on marine antifouling paints.


2021 ◽  
Author(s):  
César Augusto Paz-Villarraga ◽  
Ítalo Braga Castro ◽  
Gilberto Fillmann

Abstract Antifouling paints incorporate biocides in their composition seeking to avoid or minimize the settlement and growing of undesirable fouling organisms. Therefore, biocides are released into the aquatic environments also affecting several non-target organisms and, thus, compromising ecosystems. Despite global efforts to investigate the environment occurrence and toxicity of biocides currently used in antifouling paints, the specific active ingredients that have been used in commercial products are poorly known. Thus, the present study assessed the frequencies of occurrence and relative concentrations of biocides in antifouling paint formulations registered for marketing worldwide. The main data were obtained from databases of governmental agencies, business associations and safety data sheets from paint manufacturers around the world. Results pointed out for 25 active ingredients currently used as biocides, where up to six biocides have been simultaneously used in the examined formulations. Cuprous oxide, copper pyrithione, zinc pyrithione, zineb, DCOIT and cuprous thiocyanate were the most frequently ones, with mean relative concentrations of 35.9±12.8 %, 2.9±1.6 %, 4.0±5.3 %, 5.4±2.0 %, 1.9±1.9 % and 18.1±8.0 % (w/w) of respective biocide present in the antifouling paint formulations. Surprisingly, antifouling paints containing TBT as active ingredient are still being registered for commercialization nowadays. These results can be applied as a proxy of biocides that are possibly being used by antifouling systems and, consequently, released into the aquatic environment, which can help to prioritize the active ingredients that should be addressed in future studies.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 185
Author(s):  
Márta Simon ◽  
Nanna B. Hartmann ◽  
Jes Vollertsen

Studies that evaluate the impact of microplastic particles (MPs) often apply particles of pristine material. However, MPs are affected by various abiotic and biotic processes in the environment that possibly modify their physical and chemical characteristics, which might then result in their altered toxic effect. This study evaluated the consequence of weathering on the release of toxic leachates from microplastics. MPs derived from six marine antifouling paints, end-of-life tires, and unplasticised PVC were exposed to UV-C radiation to simulate weathering. Non-weathered and weathered MPs were leached in algae growth medium for 72 h to demonstrate additive release under freshwater conditions. The model organism, green algae Raphidocelis subcapitata, was exposed to the resulting leachates of both non-weathered and weathered MPs. The results of the growth inhibition tests showed that the leachates of weathered microparticles were more toxic than of the non-weathered material, which was reflected in their lower median effect concentration (EC50) values. Chemical analysis of the leachates revealed that the concentration of heavy metals was several times higher in the leachates of the weathered MPs compared to the non-weathered ones, which likely contributed to the increased toxicity. Our findings suggest including weathered microplastic particles in exposure studies due to their probably differing impact on biota from MPs of pristine materials.


Sign in / Sign up

Export Citation Format

Share Document