scholarly journals Demonstration Experiment of a Small Tidal Power Generator with Drag-type Water Turbine at Offshore of Tairadate in Aomori Prefecture

2021 ◽  
Vol 39 (10) ◽  
pp. 947-957
Author(s):  
Toshinobu Takei ◽  
Munekatsu Shimada ◽  
Takeshi Kubota
2021 ◽  
Vol 14 (3) ◽  
pp. 229-246
Author(s):  
Yasuyuki Nishi ◽  
Daichi Sukemori ◽  
Terumi Inagaki
Keyword(s):  

Author(s):  
Tomoki Ikoma ◽  
Shintaro Fujio ◽  
Koichi Masuda ◽  
Chang-Kyu Rheem ◽  
Hisaaki Maeda

This paper describes the possibility of an improvement of torque performance and hydrodynamic forces on a vertical axis type water turbine, used for marine current generating system. The water turbine analyzed here is based on a Darrieus turbine with vertical blades. We considered possibilities of controlling the angle of attack of blades in order to improve the starting performance and to reduce energy loss during the rotation of the turbine. We used blade-element/ momentum theory in order to investigate the variations appearing in torque performance when the angle of attack were controlled. We also proved the validity of our predictions of hydrodynamic forces on the blade and the turbine, made through CFD calculation, by comparing them with the results of corresponding model tests in a current channel. In the corresponding model test we investigated not only the hydrodynamic forces on the turbine with three fixed blades, but also the inline force and the cross-flow force on the rotating turbine with three blades. Regarding the cyclic pitching of turbine blades, results suggest that significant increase in average turbine torque is possible.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Kideok Ro ◽  
Baoshan Zhu

In this study, a reciprocating-type water turbine model that applies the principle of the Weis-Fogh mechanism was proposed, and the model's unsteady flow field was calculated by an advanced vortex method. The primary conditions were as follows: wing chord C=1, wing shaft stroke length hs=2.5C, and the maximum opening angle of the wing α=36 deg. The dynamic characteristics and unsteady flow fields of a Weis-Fogh type water turbine were investigated with velocity ratios U/V = 1.0 ∼ 3.0. Force coefficients Cu and Cv acting on the wing in the U and V directions, respectively, were found to have a strong correlation each other. The size of a separated region on the back face of the wing increased as the velocity ratio increased and as the wing approached the opposite wall. The rapid drop in Cv during a stroke increased as the velocity ratio increased, and the average Cu and Cv increased as the velocity ratio increased. The maximum efficiency of this water turbine was 14.1% at U/V = 2.0 for one wing.


Author(s):  
Yasuo TAKAMATSU ◽  
Akinori FURUKAWA ◽  
Kusuo OKUMA ◽  
Kazuki TAKENOUCHI ◽  
Toshihiko SASAKI ◽  
...  

Author(s):  
Bima Sakti ◽  
Nur Rani Alham ◽  
Ahmad Nur Fajri ◽  
Ilham Rizal Ma’rif

<em>The need for electricity in Indonesia is very important considering the limited resources and the lack of manpower, making Indonesia desperately need to increase electricity generation. One source of energy that can be converted into electrical energy is tidal barrage using the tidal barrage method. The application of this energy is still very small in Indonesia but there are a number of areas that have the potential to be implemented by the power plant. Tidal power plants that utilize the potential energy contained in the differences in tides and tides of sea water by trapping water in dams and then moving water turbines and when the water turbine is connected to a generator can produce electrical energy. Related to how the output of the generated power can it is known by looking at what height the water level drives the turbine. This type of power plant is environmentally friendly because it does not damage the natural ecosystem and the dam can be used for various activities.</em><em></em>


1981 ◽  
Vol 14 (2) ◽  
pp. 2041-2045
Author(s):  
M. Yamada ◽  
H. Matsuoka ◽  
H. Tai ◽  
I. Matsuda

2015 ◽  
Vol 39 (2) ◽  
pp. 337-355
Author(s):  
Ki-Deok Ro

In this study, a rotating-type water turbine model applying the principle of the Weis-Fogh mechanism is proposed, and its hydrodynamic characteristics calculated by an advanced vortex method. The unsteady flow and pressure fields around the wing for two revolutions were calculated by changing the uniform flow and maximum opening angle of the wing. The maximum efficiency for one wing of the water turbine was 45.3% at the maximum opening angle of the wing 36° and velocity ratio 2.0. The flow field of the water turbine is very complex because the wing rotates and moves unsteadily in the channel. However, using the advanced vortex method, accurate calculations were possible.


Sign in / Sign up

Export Citation Format

Share Document