scholarly journals Dynamic compliance control of direct-drive robots with built-in optical torque sensors.

1989 ◽  
Vol 7 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Haruhiko ASADA ◽  
Young-Tark KIM
Author(s):  
A. Kato ◽  
N. Kondo ◽  
H. Narita ◽  
K. Ito ◽  
Z. W. Luo

1990 ◽  
Vol 112 (2) ◽  
pp. 197-201 ◽  
Author(s):  
H. Kazerooni ◽  
S. Kim

In this research, a statically-balanced direct-drive manipulator is designed and constructed to achieve improved dynamic behavior for compliance control [10, 11, 12]. The manipulator mechanism, incorporating a four-bar linkage, is designed so that its functional parts are balanced in all positions without the addition of counterweights. The motors are never loaded by gravity. As a result, smaller motors with less torque can be used to achieve higher speed, accuracy, and repeatability in fine manipulation tasks. The robot is powered by high-torque AC synchronous motors. The mechanism is comprised of graphite-epoxy and AA7075T6 aluminum materials. The manipulator is controlled by a parallel processor computer.


1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-785-Pr2-788
Author(s):  
M. E.H. Benbouzid ◽  
G. Reyne ◽  
G. Meunier
Keyword(s):  

2013 ◽  
Vol 43 (1) ◽  
pp. 47-60
Author(s):  
Mihail Tsveov ◽  
Dimitar Chakarov

Abstract In the paper, different approaches for compliance control for human oriented robots are revealed. The approaches based on the non- antagonistic and antagonistic actuation are compared. In addition, an approach is investigated in this work for the compliance and the position control in the joint by means of antagonistic actuation. It is based on the capability of the joint with torsion leaf springs to adjust its stiffness. Models of joint stiffness are presented in this paper with antagonistic and non-antagonistic influence of the spring forces on the joint motion. The stiffness and the position control possibilities are investigated and the opportunity for their decoupling as well. Some results of numerical experiments are presented in the paper too.


Sign in / Sign up

Export Citation Format

Share Document