Design of Low Pass Filters Using Corrugated Waveguide for Satellite Communications

Author(s):  
Hwe-Jong Kim ◽  
Hak-Keun Choi
2018 ◽  
Vol 75 ◽  
pp. 1-6
Author(s):  
Fernando Teberio ◽  
Jon Mikel Percaz ◽  
Ivan Arregui ◽  
Petronilo Martin-Iglesias ◽  
Txema Lopetegi ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 47-55
Author(s):  
Reşat Tüzün ◽  
Nursel Akçam

Microstrip filters have a significant role in Radio Frequency/Microwave applications. Microstrip filters are common on microwave circuits, satellite communications, radars, test equipments and so on. Because microstrip filters are compact, cheap and easy to produce, they are highly preferred for microwave applications. Microwave filter; microwave system is a two-ported element used to control the frequency response at a certain point by attenuating the frequencies in the stop band by transmitting in the frequency band. Typical frequency responses are low pass, high pass, band pass and band stop. Also approaches such as Butterworth, Chebyshev, and Elliptic are defining filter characteristics. In this paper, microstrip filters havign Chebyshev, Elliptic and Maximally Flat approaches were designed. For example Chebyshev filter of design filters having 6 GHz cut frequency and having 46,34 dB at 6,6 GHz. The insertion loss is -3,66 dB at 6 GHz. AWR Sonnet is used for the simulation and analysis of this filters.


2015 ◽  
Vol E98.C (2) ◽  
pp. 156-161
Author(s):  
Hidenori YUKAWA ◽  
Koji YOSHIDA ◽  
Tomohiro MIZUNO ◽  
Tetsu OWADA ◽  
Moriyasu MIYAZAKI
Keyword(s):  
Ka Band ◽  
Low Pass ◽  

2011 ◽  
Vol 5 (2) ◽  
pp. 155-162
Author(s):  
Jose de Jesus Rubio ◽  
Diana M. Vazquez ◽  
Jaime Pacheco ◽  
Vicente Garcia

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 328
Author(s):  
Mikulas Huba ◽  
Damir Vrancic

The paper investigates and explains a new simple analytical tuning of proportional-integrative-derivative (PID) controllers. In combination with nth order series binomial low-pass filters, they are to be applied to the double-integrator-plus-dead-time (DIPDT) plant models. With respect to the use of derivatives, it should be understood that the design of appropriate filters is not only an implementation problem. Rather, it is also critical for the resulting performance, robustness and noise attenuation. To simplify controller commissioning, integrated tuning procedures (ITPs) based on three different concepts of filter delay equivalences are presented. For simultaneous determination of controller + filter parameters, the design uses the multiple real dominant poles method. The excellent control loop performance in a noisy environment and the specific advantages and disadvantages of the resulting equivalences are discussed. The results show that none of them is globally optimal. Each of them is advantageous only for certain noise levels and the desired degree of their filtering.


Sign in / Sign up

Export Citation Format

Share Document