scholarly journals Peer Review #1 of "Association between shell morphology of micro-land snails (genus Plectostoma) and their predator’s predatory behaviour (v0.1)"

Author(s):  
TJ DeWitt
2013 ◽  
Author(s):  
Thor-Seng Liew ◽  
Menno Schilthuizen

Predator-prey interactions are among the main ecological interactions that shape the diversity of biological form. In many cases, the evolution of the mollusc shell form is presumably driven by predation. However, the adaptive significance of several uncommon, yet striking, shell traits of land snails are still poorly known. These include the distorted coiled “tuba” and the protruded radial ribs that can be found in micro-landsnails of the genus Plectostoma. Here, we experimentally tested whether these shell traits may act as defensive adaptations against predators. First, we identified the predators, namely, Atopos slugs and Pteroptyx beetle larvae, and their predatory strategies towards Plectostoma snails. Then, we characterised and quantified the possible anti-predation behaviour and shell traits of Plectostoma snails both in terms of their properties and efficiencies in defending against the Atopos slug predatory strategies, namely, shell-apertural entry and shell-drilling. The results showed that Atopos slugs would first attack the snail by shell-apertural entry, and, should this fail, shift to the energetically more costly shell-drilling strategy. We found that the shell tuba of Plectostoma snails is an effective defensive trait against shell-apertural entry attack. None of the snail traits, such as resting behaviour, shell thickness, shell tuba shape, shell rib density and intensity can protect the snail from the slug’s shell-drilling attack. However, these traits could increase the predation costs to the slug. Further analysis on the shell traits revealed that the lack of effectiveness these anti-predation shell traits may be caused by a functional trade-off between shell traits under selection of two different predatory strategies. Lastly, we discuss our results in the framework of Red Queen predator-prey coevolution and escalation, and propose several key elements for future study.


2013 ◽  
Author(s):  
Thor-Seng Liew ◽  
Menno Schilthuizen

Predator-prey interactions are among the main ecological interactions that shape the diversity of biological form. In many cases, the evolution of the mollusc shell form is presumably driven by predation. However, the adaptive significance of several uncommon, yet striking, shell traits of land snails are still poorly known. These include the distorted coiled “tuba” and the protruded radial ribs that can be found in micro-landsnails of the genus Plectostoma. Here, we experimentally tested whether these shell traits may act as defensive adaptations against predators. First, we identified the predators, namely, Atopos slugs and Pteroptyx beetle larvae, and their predatory strategies towards Plectostoma snails. Then, we characterised and quantified the possible anti-predation behaviour and shell traits of Plectostoma snails both in terms of their properties and efficiencies in defending against the Atopos slug predatory strategies, namely, shell-apertural entry and shell-drilling. The results showed that Atopos slugs would first attack the snail by shell-apertural entry, and, should this fail, shift to the energetically more costly shell-drilling strategy. We found that the shell tuba of Plectostoma snails is an effective defensive trait against shell-apertural entry attack. None of the snail traits, such as resting behaviour, shell thickness, shell tuba shape, shell rib density and intensity can protect the snail from the slug’s shell-drilling attack. However, these traits could increase the predation costs to the slug. Further analysis on the shell traits revealed that the lack of effectiveness these anti-predation shell traits may be caused by a functional trade-off between shell traits under selection of two different predatory strategies. Lastly, we discuss our results in the framework of Red Queen predator-prey coevolution and escalation, and propose several key elements for future study.


ZooKeys ◽  
2020 ◽  
Vol 996 ◽  
pp. 37-58
Author(s):  
Pei Wang ◽  
Mei-Ling Hu ◽  
Jun-Hong Lin ◽  
Hai-Fang Yang ◽  
Xiao-Jing Li ◽  
...  

In this study, four new dextral camaenid from China are reported, based on shell morphology, reproductive system anatomy, and molecular phylogenetic analyses: Camaena funingensis Zhou, Wang & Lin, sp. nov., Camaena gaolongensis Zhou, Wang & Lin, sp. nov., Camaena maguanensis Zhou, Wang & Hu, sp. nov., and Camaena yulinensis Zhou, Wang & Hu, sp. nov. Detailed descriptions of the morphological characteristics including shells and genitalia, DNA sequences, and living environments of the four new species are provided, with further comparisons with congeners.


2021 ◽  
Author(s):  
Zoë R. Hamilton

An undescribed small, banded morphotype of Rhagada land snails occurs widely in the rocky inland Pilbara region, Western Australia. Phylogenetic analysis of mitochondrial COI and 16S rRNA genes revealed that this novel morphotype is polyphyletic, comprising four distinct major clades, with divergences up to 21.4% at COI. These clades are apparently morphologically cryptic, with no obvious shell differences. Two of these species are associated with the major clade of Rhagada in the Pilbara mainland, one of which appears to be a variant of the larger, more globose species R. pilbarana, which occurs within 20km proximity. The other two small, banded species are phylogenetically distinct from each other and all other known Rhagada. This small, banded morphotype shows evidence for both plesiomorphy and homoplasy. The morphotype has evolved independently at least twice, and is associated with the reasonably uniform habitat and harsh conditions in the elevated hinterland of the inland Pilbara. The broad distribution of the inland, small, banded morphotype conforms to the pattern of broad-scale uniformity of shells of the more coastal species of Rhagada. Its repeated evolution, however, confirms that the morphological uniformity is not simply because of common ancestry, supporting the theory that shell form in Rhagada is adapted to a broadly homogenous environment. Shell morphology in this genus has been demonstrated on more than one occasion to have the potential to adapt to different available environments, and hence shells should be used with a degree of caution for taxonomic interpretation.


2008 ◽  
Vol 363 (1508) ◽  
pp. 3401-3412 ◽  
Author(s):  
Rebecca J Rundell

The endemic diplommatinid land snails (Caenogastropoda: Mollusca) of Belau (Republic of Palau, Micronesia) are an exceptionally diverse group of largely undescribed species distributed among rock and leaf litter habitats on most of Belau's 586 islands. Diplommatinid shell morphology (e.g. shell sculpture) reflects habitat type. In this study, I analysed a subset of the 90 diplommatinid species representing a broad geographical spread of islands in order to reveal the species' phylogenetic relationships and biogeography within the Belau archipelago. Diplommatinid species from the islands of Yap, Pohnpei, Kosrae and Guam are also included in the analysis. One nuclear (28S rRNA) and two mitochondrial (16S rRNA, COI) gene regions comprising 1906 bp were used for phylogenetic reconstruction. Results show that (i) the Belau Diplommatinidae are not monophyletic, as Guam and Yap species should be included as part of the radiation, (ii) Pohnpei and Kosrae species are highly divergent from Belau diplommatinids, (iii) there is little evidence for in situ radiation within individual Belau islands, (iv) spined and heavily calcified rock-dwelling species form a well-supported clade, and (v) Belau diplommatinid genera are in need of revision.


Sign in / Sign up

Export Citation Format

Share Document