scholarly journals Peer Review #3 of "Shifts in stability and control effectiveness during evolution of Paraves support aerial maneuvering hypotheses for flight origins (v0.2)"

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e85203 ◽  
Author(s):  
Dennis Evangelista ◽  
Griselda Cardona ◽  
Eric Guenther-Gleason ◽  
Tony Huynh ◽  
Austin Kwong ◽  
...  

Author(s):  
N. CHITRA ◽  
TAMIZHARASI. G ◽  
A. SENTHIL KUMAR

The dynamic nature of the distribution network challenges the stability and control effectiveness of the microgrid in autonomous mode. In this paper, nonlinear model of microgrid operating in autonomous mode has been presented. The controller parameters and power sharing coefficients are optimized in case of autonomous mode. The control problem has been formulated as an optimization problem where Ant colony optimization is employed to search for optimal settings of the optimized parameters. In addition, nonlinear time-domain-based objective function has been proposed to minimize the error in the measured power and to enhance the damping characteristics, respectively. Finally, the nonlinear time-domain simulation has been carried out to assess the effectiveness of the proposed controllers under different disturbances and loading conditions. The results show satisfactory performance with efficient damping characteristics of the microgrid considered in this study.


2013 ◽  
Author(s):  
Dennis Evangelista ◽  
Griselda Cardona ◽  
Eric Guenther-Gleason ◽  
Tony Huynh ◽  
Austin Kwong ◽  
...  

We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur,Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. WhileM. guilived afterArchaeopteryxand likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. Now published in PLOS ONE http://dx.plos.org/10.1371/journal.pone.0085203


2014 ◽  
Author(s):  
Dennis Evangelista ◽  
Sharlene Cam ◽  
Tony Huynh ◽  
Austin Kwong ◽  
Homayun Mehrabani ◽  
...  

The capacity for aerial maneuvering was likely a major influence on the evolution of flying animals. Here we evaluate consequences of paravian morphology for aerial performance by quantifying static stability and control effectiveness of physical models for numerous taxa sampled from within the lineage leading to birds (Paraves). Results of aerodynamic testing are mapped phylogenetically to examine how maneuvering characteristics correlate with tail shortening, fore- and hind-wing elaboration, and other morphological features. In the evolution of Paraves we observe shifts from static stability to inherently unstable aerial platforms; control effectiveness also migrated from tails to the forewings. These shifts suggest that some degree of aerodynamic control and and capacity for maneuvering preceded the evolution of strong power stroke. The timing of shifts also suggests features normally considered in light of development of a power stroke may play important roles in control.


PeerJ ◽  
2014 ◽  
Vol 2 ◽  
pp. e632 ◽  
Author(s):  
Dennis Evangelista ◽  
Sharlene Cam ◽  
Tony Huynh ◽  
Austin Kwong ◽  
Homayun Mehrabani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document