scholarly journals Peer Review #1 of "Transcriptomic analysis reveals ethylene signal transduction genes involved in pistil development of pumpkin (v0.2)"

Author(s):  
S de Folter
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9677
Author(s):  
Qingfei Li ◽  
Li Zhang ◽  
Feifei Pan ◽  
Weili Guo ◽  
Bihua Chen ◽  
...  

Development of female flowers is an important process that directly affects the yield of Cucubits. Little information is available on the sex determination and development of female flowers in pumpkin, a typical monoecious plant. In the present study, we used aborted and normal pistils of pumpkin for RNA-Seq analysis and determined the differentially expressed genes (DEGs) to gain insights into the molecular mechanism underlying pistil development in pumpkin. A total of 3,817 DEGs were identified, among which 1,341 were upregulated and 2,476 were downregulated. The results of transcriptome analysis were confirmed by real-time quantitative RT-PCR. KEGG enrichment analysis showed that the DEGs were significantly enriched in plant hormone signal transduction and phenylpropanoid biosynthesis pathway. Eighty-four DEGs were enriched in the plant hormone signal transduction pathway, which accounted for 12.54% of the significant DEGs, and most of them were annotated as predicted ethylene responsive or insensitive transcription factor genes. Furthermore, the expression levels of four ethylene signal transduction genes in different flower structures (female calyx, pistil, male calyx, stamen, leaf, and ovary) were investigated. The ethyleneresponsive DNA binding factor, ERDBF3, and ethylene responsive transcription factor, ERTF10, showed the highest expression in pistils and the lowest expression in stamens, and their expression levels were 78- and 162-times more than that in stamens, respectively. These results suggest that plant hormone signal transduction genes, especially ethylene signal transduction genes, play an important role in the development of pistils in pumpkin. Our study provides a theoretical basis for further understanding of the mechanism of regulation of ethylene signal transduction genes in pistil development and sex determination in pumpkin.


2007 ◽  
Vol 58 (13) ◽  
pp. 3631-3643 ◽  
Author(s):  
I. El-Sharkawy ◽  
W. S. Kim ◽  
A. El-Kereamy ◽  
S. Jayasankar ◽  
A. M. Svircev ◽  
...  

2005 ◽  
Vol 83 (6) ◽  
pp. 563-570 ◽  
Author(s):  
Michael G Mason ◽  
G Eric Schaller

Ethylene is a gaseous hormone that regulates many aspects of plant growth and development. Although the effect of ethylene on plant growth was discovered a century ago, the key players in the ethylene response pathway were only identified over the last 15 years. In Arabidopsis, ethylene is perceived by a family of five receptors (ETR1, ETR2, ERS1, ERS2, and EIN4) that resemble two-component histidine kinases. Of these, only ETR1 and ERS1 contain all the conserved residues required for histidine kinase activity. The ethylene receptors appear to function primarily through CTR1, a serine/threonine kinase that actively suppresses ethylene responses in air (absence of ethylene). Despite recent progress toward understanding ethylene signal transduction, the role of the ethylene-receptor histidine-kinase activity remains unclear. This review considers the significance of histidine kinase activity in ethylene signaling and possible mechanisms by which it may modulate ethylene responses.Key words: ethylene receptor, ETR1, histidine kinase, two-component, phosphorylation, Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document