signal transduction genes
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 0)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ruojun Wang ◽  
Weipeng Zhang ◽  
Wei Ding ◽  
Zhicong Liang ◽  
Lexin Long ◽  
...  

Microbes use signal transduction systems in the processes of swarming motility, antibiotic resistance, virulence, conjugal plasmid transfer, and biofilm formation. However, the signal transduction systems in natural marine biofilms have hardly been profiled. Here we analyzed signal transduction genes in 101 marine biofilm and 91 seawater microbial metagenomes. The abundance of almost all signal transduction-related genes in biofilm microbial communities was significantly higher than that in seawater microbial communities, regardless of substrate types, locations, and durations for biofilm development. In addition, the dominant source microbes of signal transduction genes in marine biofilms were different from those in seawater samples. Co-occurrence network analysis on signal communication between microbes in marine biofilms and seawater microbial communities revealed potential inter-phyla interactions between microorganisms from marine biofilms and seawater. Moreover, phylogenetic tree construction and protein identity comparison displayed that proteins related to signal transductions from Red Sea biofilms were highly similar to those from Red Sea seawater microbial communities, revealing a possible biological basis of interspecies interactions between surface-associated and free-living microbial communities in a local marine environment. Our study revealed the special profile and enrichment of signal transduction systems in marine biofilms and suggested that marine biofilms participate in intercellular interactions of the local ecosystem where they were seeded.


2021 ◽  
Author(s):  
Ashok Kumar Saxena ◽  
Anshul Singh ◽  
Geetanjali T Chilkoti ◽  
Tusha Sharma ◽  
Basu Dev Banerjee ◽  
...  

Introduction: A randomized controlled study was conducted to assess modulation of signal transduction genes ( PKA, PKC and ERK) following integrated multimodal approach encompassing pulsed radiofrequency treatment (PRF) of dorsal root ganglion and pregabalin in thoracic postherpetic neuralgia (PHN). Clinical variables such as pain intensity and quality of life were also explored. Material & methods: A total of 40 Patients of PHN were recruited. 20 patients randomly assigned to each of the two groups, group PP administered PRF with pregabalin and group SP administered pregabalin alone. Results: Significant downregulation of PKA and ERK observed in group PP at end of 10th week (p < 0.05). A significantly positive correlation demonstrated between Visual analog scale scores and signal transduction genes expression in PHN patients. Conclusion: Downregulation of all three signal transduction genes was observed following the integrated multimodal approach; however, significant downregulation was observed with PKA and ERK only. A positive correlation observed between signal transduction gene expression and visual analog scale scores signify their role in the pathogenesis of PHN.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anna L. McLoon ◽  
Max E. Boeck ◽  
Marc Bruckskotten ◽  
Alexander C. Keyel ◽  
Lotte Søgaard-Andersen

Abstract Background The Myxococcales are well known for their predatory and developmental social processes, and for the molecular complexity of regulation of these processes. Many species within this order have unusually large genomes compared to other bacteria, and their genomes have many genes that are unique to one specific sequenced species or strain. Here, we describe RNAseq based transcriptome analysis of the FruA regulon of Myxococcus xanthus and a comparative RNAseq analysis of two Myxococcus species, M. xanthus and Myxococcus stipitatus, as they respond to starvation and begin forming fruiting bodies. Results We show that both species have large numbers of genes that are developmentally regulated, with over half the genome showing statistically significant changes in expression during development in each species. We also included a non-fruiting mutant of M. xanthus that is missing the transcriptional regulator FruA to identify the direct and indirect FruA regulon and to identify transcriptional changes that are specific to fruiting and not just the starvation response. We then identified Interpro gene ontologies and COG annotations that are significantly up- or down-regulated during development in each species. Our analyses support previous data for M. xanthus showing developmental upregulation of signal transduction genes, and downregulation of genes related to cell-cycle, translation, metabolism, and in some cases, DNA replication. Gene expression in M. stipitatus follows similar trends. Although not all specific genes show similar regulation patterns in both species, many critical developmental genes in M. xanthus have conserved expression patterns in M. stipitatus, and some groups of otherwise unstudied orthologous genes share expression patterns. Conclusions By identifying the FruA regulon and identifying genes that are similarly and uniquely regulated in two different species, this work provides a more complete picture of transcription during Myxococcus development. We also provide an R script to allow other scientists to mine our data for genes whose expression patterns match a user-selected gene of interest.


2020 ◽  
Vol 71 (22) ◽  
pp. 7241-7256
Author(s):  
Zhen Zhang ◽  
Jing Huang ◽  
Yanmei Gao ◽  
Yang Liu ◽  
Jinpeng Li ◽  
...  

Abstract Water stress is a primary trigger for reducing grain number per spike in wheat during the reproductive period. However, under stress conditions, the responses of plant organs and the interactions between them at the molecular and physiological levels remain unclear. In this study, when water stress occurred at the young microspore stage, RNA-seq data indicated that the spike had 970 differentially expressed genes, while the stem, comprising the two internodes below the spike (TIS), had 382. Abscisic acid (ABA) signal transduction genes were down-regulated by water stress in both these tissues, although to a greater extent in the TIS than in the spike. A reduction in sucrose was observed, and was accompanied by increases in cell wall invertase (CWIN) and sucrose:sucrose 1-fructosyl-transferase (1-SST) activities. Hexose and fructan were increased in the TIS but decreased in the spike. ABA was increased in the spike and TIS, and showed significant positive correlation with CWIN and 1-SST activities in the TIS. Overall, our results suggest that water stress induces the conversion of sucrose to hexose by CWIN, and to fructan by 1-SST, due to increased down-regulation of ABA signal transduction related-genes in the TIS; this leads to deficient sucrose supply to the spike and a decrease in grain number.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9677
Author(s):  
Qingfei Li ◽  
Li Zhang ◽  
Feifei Pan ◽  
Weili Guo ◽  
Bihua Chen ◽  
...  

Development of female flowers is an important process that directly affects the yield of Cucubits. Little information is available on the sex determination and development of female flowers in pumpkin, a typical monoecious plant. In the present study, we used aborted and normal pistils of pumpkin for RNA-Seq analysis and determined the differentially expressed genes (DEGs) to gain insights into the molecular mechanism underlying pistil development in pumpkin. A total of 3,817 DEGs were identified, among which 1,341 were upregulated and 2,476 were downregulated. The results of transcriptome analysis were confirmed by real-time quantitative RT-PCR. KEGG enrichment analysis showed that the DEGs were significantly enriched in plant hormone signal transduction and phenylpropanoid biosynthesis pathway. Eighty-four DEGs were enriched in the plant hormone signal transduction pathway, which accounted for 12.54% of the significant DEGs, and most of them were annotated as predicted ethylene responsive or insensitive transcription factor genes. Furthermore, the expression levels of four ethylene signal transduction genes in different flower structures (female calyx, pistil, male calyx, stamen, leaf, and ovary) were investigated. The ethyleneresponsive DNA binding factor, ERDBF3, and ethylene responsive transcription factor, ERTF10, showed the highest expression in pistils and the lowest expression in stamens, and their expression levels were 78- and 162-times more than that in stamens, respectively. These results suggest that plant hormone signal transduction genes, especially ethylene signal transduction genes, play an important role in the development of pistils in pumpkin. Our study provides a theoretical basis for further understanding of the mechanism of regulation of ethylene signal transduction genes in pistil development and sex determination in pumpkin.


Sign in / Sign up

Export Citation Format

Share Document