scholarly journals The angular gyrus model of consciousness

Author(s):  
Graeme E Smith

The Angular Gyrus sits at the point where the Temporal and Parietal Lobes join. It is a point where integrative processes link together the Where and What pathways through the brain and link them to time. It is also the most likely location for at least two centers of consciousness. In this article the location is discussed and it's potential for a model of consciousness that replaces the Declarative Memory Model of Consciousness previously put forward. It's main benefit over the Declarative Memory Model of Consciousness is that it allows for the preservation of consciousness despite the loss of declarative memory in the cases of Medial Temporal Lobe injury/disease. However Connectome studies might support this model in that the TemporoParietal Fiber Intersection Area provides 7 different white matter tracts that intersect in this area.

2013 ◽  
Author(s):  
Graeme E Smith

The Angular Gyrus sits at the point where the Temporal and Parietal Lobes join. It is a point where integrative processes link together the Where and What pathways through the brain and link them to time. It is also the most likely location for at least two centers of consciousness. In this article the location is discussed and it's potential for a model of consciousness that replaces the Declarative Memory Model of Consciousness previously put forward. It's main benefit over the Declarative Memory Model of Consciousness is that it allows for the preservation of consciousness despite the loss of declarative memory in the cases of Medial Temporal Lobe injury/disease. However Connectome studies might support this model in that the TemporoParietal Fiber Intersection Area provides 7 different white matter tracts that intersect in this area.


2013 ◽  
Author(s):  
Graeme E Smith

The Angular Gyrus sits at the point where the Temporal and Parietal Lobes join. It is a point where integrative processes link together the Where and What pathways through the brain and link them to time. It is also the most likely location for at least two centers of consciousness. In this article the location is discussed and it's potential for a model of consciousness that replaces the Declarative Memory Model of Consciousness previously put forward. It's main benefit over the Declarative Memory Model of Consciousness is that it allows for the preservation of consciousness despite the loss of declarative memory in the cases of Medial Temporal Lobe injury/disease. However Connectome studies might support this model in that the TemporoParietal Fiber Intersection Area provides 7 different white matter tracts that intersect in this area.


Epilepsia ◽  
2013 ◽  
Vol 54 (10) ◽  
pp. 1801-1809 ◽  
Author(s):  
Chu-Yu Lee ◽  
Ali Tabesh ◽  
Andreana Benitez ◽  
Joseph A. Helpern ◽  
Jens H. Jensen ◽  
...  

2014 ◽  
Vol 25 (9) ◽  
pp. 2574-2583 ◽  
Author(s):  
Carter Wendelken ◽  
Joshua K. Lee ◽  
Jacqueline Pospisil ◽  
Marcos Sastre ◽  
Julia M. Ross ◽  
...  

2012 ◽  
Vol 72 (1) ◽  
pp. ons87-ons98 ◽  
Author(s):  
Juan Martino ◽  
Rousinelle da Silva-Freitas ◽  
Hugo Caballero ◽  
Enrique Marco de Lucas ◽  
Juan A. García-Porrero ◽  
...  

Abstract Background: Lesion studies and recent surgical series report important sequelae when the inferior parietal lobe and posterior temporal lobe are damaged. Millions of axons cross through the white matter underlying these cortical areas; however, little is known about the complex organization of these connections. Objective: To analyze the subcortical anatomy of a specific region within the parietal and temporal lobes where 7 long-distances tracts intersect, ie, the temporoparietal fiber intersection area (TPFIA). Methods: Four postmortem human hemispheres were dissected, and 4 healthy hemispheres were analyzed through the use of diffusion tensor imaging-based tractography software. The different tracts that intersect at the posterior temporal and parietal lobes were isolated, and the relations with the surrounding structures were analyzed. Results: Seven tracts pass through the TPFIA: horizontal portion of the superior longitudinal fasciculus, arcuate fasciculus, middle longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, optic radiations, and tapetum. The TPFIA was located deep to the angular gyrus, posterior portion of the supramarginal gyrus, and posterior portion of the superior, middle, and inferior temporal gyri. Conclusion: The TPFIA is a critical neural crossroad; it is traversed by 7 white matter tracts that connect multiple areas of the ipsilateral and contralateral hemisphere. It is also a vulnerable part of the network in that a lesion within this area will produce multiple disconnections. This is valuable information when a surgical approach through the parieto-temporo-occipital junction is planned. To decrease surgical risks, a detailed diffusion tensor imaging tractography reconstruction of the TPFIA should be performed, and intraoperative electric stimulation should be strongly considered.


Neurology ◽  
2005 ◽  
Vol 64 (2) ◽  
pp. 263-267 ◽  
Author(s):  
T. den Heijer ◽  
L. J. Launer ◽  
N. D. Prins ◽  
E. J. van Dijk ◽  
S. E. Vermeer ◽  
...  

2006 ◽  
Vol 18 (10) ◽  
pp. 1654-1662 ◽  
Author(s):  
Indre V. Viskontas ◽  
Barbara J. Knowlton ◽  
Peter N. Steinmetz ◽  
Itzhak Fried

Different structures within the medial-temporal lobe likely make distinct contributions to declarative memory. In particular, several current psychological and computational models of memory predict that the hippocampus and parahippocampal regions play different roles in the formation and retrieval of declarative memories [e.g., Norman, K. A., & O'Reilly, R. C. Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning systems approach. Psychological Review, 110, 611–646, 2003]. Here, we examined the neuronal firing patterns in these two regions during recognition memory. Recording directly from neurons in humans, we find that cells in both regions respond to novel stimuli with an increase in firing (excitation). However, already on the second presentation of a stimulus, neurons in these regions show very different firing patterns. In the parahippocampal region there is dramatic decrease in the number of cells responding to the stimuli, whereas in the hippocampus there is recruitment of a large subset of neurons showing inhibitory (decrease from baseline firing) responses. These results suggest that inhibition is a mechanism used by cells in the human hippocampus to support sparse coding in mnemonic processing. The findings also provide further evidence for the division of labor in the medial-temporal lobe with respect to declarative memory processes.


Sign in / Sign up

Export Citation Format

Share Document