Fiber Dissection and Diffusion Tensor Imaging Tractography Study of the Temporoparietal Fiber Intersection Area

2012 ◽  
Vol 72 (1) ◽  
pp. ons87-ons98 ◽  
Author(s):  
Juan Martino ◽  
Rousinelle da Silva-Freitas ◽  
Hugo Caballero ◽  
Enrique Marco de Lucas ◽  
Juan A. García-Porrero ◽  
...  

Abstract Background: Lesion studies and recent surgical series report important sequelae when the inferior parietal lobe and posterior temporal lobe are damaged. Millions of axons cross through the white matter underlying these cortical areas; however, little is known about the complex organization of these connections. Objective: To analyze the subcortical anatomy of a specific region within the parietal and temporal lobes where 7 long-distances tracts intersect, ie, the temporoparietal fiber intersection area (TPFIA). Methods: Four postmortem human hemispheres were dissected, and 4 healthy hemispheres were analyzed through the use of diffusion tensor imaging-based tractography software. The different tracts that intersect at the posterior temporal and parietal lobes were isolated, and the relations with the surrounding structures were analyzed. Results: Seven tracts pass through the TPFIA: horizontal portion of the superior longitudinal fasciculus, arcuate fasciculus, middle longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, optic radiations, and tapetum. The TPFIA was located deep to the angular gyrus, posterior portion of the supramarginal gyrus, and posterior portion of the superior, middle, and inferior temporal gyri. Conclusion: The TPFIA is a critical neural crossroad; it is traversed by 7 white matter tracts that connect multiple areas of the ipsilateral and contralateral hemisphere. It is also a vulnerable part of the network in that a lesion within this area will produce multiple disconnections. This is valuable information when a surgical approach through the parieto-temporo-occipital junction is planned. To decrease surgical risks, a detailed diffusion tensor imaging tractography reconstruction of the TPFIA should be performed, and intraoperative electric stimulation should be strongly considered.

Author(s):  
Shawn D’Souza ◽  
Lisa Hirt ◽  
David R Ormond ◽  
John A Thompson

Abstract Gliomas are neoplasms that arise from glial cell origin and represent the largest fraction of primary malignant brain tumours (77%). These highly infiltrative malignant cell clusters modify brain structure and function through expansion, invasion and intratumoral modification. Depending on the growth rate of the tumour, location and degree of expansion, functional reorganization may not lead to overt changes in behaviour despite significant cerebral adaptation. Studies in simulated lesion models and in patients with stroke reveal both local and distal functional disturbances, using measures of anatomical brain networks. Investigations over the last two decades have sought to use diffusion tensor imaging tractography data in the context of intracranial tumours to improve surgical planning, intraoperative functional localization, and post-operative interpretation of functional change. In this study, we used diffusion tensor imaging tractography to assess the impact of tumour location on the white matter structural network. To better understand how various lobe localized gliomas impact the topology underlying efficiency of information transfer between brain regions, we identified the major alterations in brain network connectivity patterns between the ipsilesional versus contralesional hemispheres in patients with gliomas localized to the frontal, parietal or temporal lobe. Results were indicative of altered network efficiency and the role of specific brain regions unique to different lobe localized gliomas. This work draws attention to connections and brain regions which have shared structural susceptibility in frontal, parietal and temporal lobe glioma cases. This study also provides a preliminary anatomical basis for understanding which affected white matter pathways may contribute to preoperative patient symptomology.


2013 ◽  
Author(s):  
Graeme E Smith

The Angular Gyrus sits at the point where the Temporal and Parietal Lobes join. It is a point where integrative processes link together the Where and What pathways through the brain and link them to time. It is also the most likely location for at least two centers of consciousness. In this article the location is discussed and it's potential for a model of consciousness that replaces the Declarative Memory Model of Consciousness previously put forward. It's main benefit over the Declarative Memory Model of Consciousness is that it allows for the preservation of consciousness despite the loss of declarative memory in the cases of Medial Temporal Lobe injury/disease. However Connectome studies might support this model in that the TemporoParietal Fiber Intersection Area provides 7 different white matter tracts that intersect in this area.


2020 ◽  
Vol 7 ◽  
Author(s):  
Samuel Boucher ◽  
Germain Arribarat ◽  
Benjamin Cartiaux ◽  
Elodie Anne Lallemand ◽  
Patrice Péran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document