Precipitation and aridity index regulating spatial patterns of vegetation production and species diversity based on alpine grassland transect, Tibetan Plateau
Although the relationship between the aboveground net primary production (ANPP) and speciesdiversity (SR) have been widely reported, there is considerable disagreement about the fitting patterns of SR–ANPP, which has been variously described as ‘positive’, ‘negative’, ‘unimodal’, ‘U-shaped’ and so on. Not surprisingly, the effect-factors including precipitation, aridity index and geographic conditions (e.g.,altitude, longitude and latitude) on ANPP and SR continue to interest researchers, especially the effects at high altitude regions. We investigated ANPP and SR from 113 sampled sites (399 plots) across alpine meadow and steppe in the Tibetan Plateau, which included Tibet, Qinghai and Sichuan province. The effects of various environmental factors (precipitation, temperature, aridity index, altitude, longitude,latitude and vegetation type on SR and ANPP) were explored. The results indicate that a unimodal pattern was confirmed between ANPP and SR in alpine steppe (R 2 =0.45, P <0.0001), alpine meadow ( R 2 =0.4, P <0.0001), and all samples across alpine grassland ( R 2 =0.52, P <0.0001). For the aboveground net primary production, the appropriate precipitation and aridity is 600mm and 42, respectively. Under thesame moisture conditions, the maximum value of diversity is 0.75. Longitude ( R 2 =0.69, P <0.0001) and altitude ( R 2 =0.48, P <0.0001) have positive and negative effects on aboveground net primary production, and a similar relationship exists with diversity ( R 2 =0.44, P <0.0001 and R 2 =0.3, P <0.0001).The same patterns of diversity and production responding to precipitation and the aridity index were evident in alpine steppe and meadow, and a unimodal pattern was confirmed between ANPP and SR in both locations.