terra modis
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 68)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Vol 13 (24) ◽  
pp. 5106
Author(s):  
Jacques Descloitres ◽  
Audrey Minghelli ◽  
François Steinmetz ◽  
Cristèle Chevalier ◽  
Malik Chami ◽  
...  

Since 2011, massive stranding of the brown algae Sargassum has regularly affected the coastal waters of the West Caribbean, Brazil and West Africa, leading to significant environmental and socio-economic impacts. The AFAI algal index (Alternative Floating Algae Index) is often used with remote sensing data in order to estimate the Sargassum coverage, and more precisely the AFAI deviation, which consists of the difference between AFAI and AFAI of the Sargassum-free background. In this study, the AFAI deviation is computed using NASA’s 1 km Terra/MODIS (Moderate-Resolution Imaging Spectroradiometer) and ESA/Copernicus’s 20 m Sentinel-2/MSI (Multi Spectral Instrument) for the same sites and at the same time. Both MODIS and MSI AFAI deviations are compared to confirm the relevance of AFAI deviation technique for two very different spatial resolutions. A high coefficient of determination was found, thus confirming a satisfactory downsampling from 20 m (MSI) to 1 km (MODIS). Then, AFAI deviations are used to estimate the fractional coverage of Sargassum (noted FC). A new linear relationship between the MODIS AFAI deviation and FC is established using the dense Sargassum aggregations observed by MSI data. The AFAI deviation is proportional to FC with a factor of proportionality close to 0.08. Finally, it is shown that the factor is dependent on the Sargassum spectral reflectance, submersion or physiological state.


2021 ◽  
Author(s):  
Xiaohua Hao ◽  
Guanghui Huang ◽  
Zhaojun Zheng ◽  
Xingliang Sun ◽  
Wenzheng Ji ◽  
...  

Abstract. Based on the MOD09GA/MYD09GA 500-m surface reflectance, a new MODIS snow-cover-extent (SCE) product over China has been produced by the Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences. The NIEER MODIS SCE product contains two preliminary clear-sky SCE datasets — Terra-MODIS and Aqua-MODIS SCE datasets, and a final daily cloud-gap-filled (CGF) SCE dataset. The formers are generated mainly through optimizing snow-cover discriminating rules over different land-cover types, and the latter is produced after a series of gap-filling processes such as aggregating the two preliminary datasets, reducing cloud gaps with adjacent information in space and time, and eliminating all gaps with auxiliary data. Validation against 362 China Meteorological Administration (CMA) stations shows during snow seasons the overall accuracies (OA) of the three datasets are all larger than 93 %, the omission errors (OE) are all constrained within 9 %, and the commission errors (CE) are all constrained within 10 %. Biases ranging from the lowest 0.98 to the medium 1.02, to the largest 1.03 demonstrate on a whole the SCEs given by the new product are neither overestimated nor underestimated significantly. Based on the same ground reference data, we found the new product’s accuracies are clearly higher than those of standard MODIS snow products, especially for Aqua-MODIS and CGF SCE. For examples, compared with the CE of 23.78 % that the standard MYD10A1 product shows, the CE of the new Aqua-MODIS SCE dataset is 6.78 %; the OA of the new CGF SCE dataset is up to 93.15 %, versus 89.54 % of the standard MOD10A1F product and 84.36 % of the standard MYD10A1F product. Besides, as expected snow discrimination in forest areas is also improved significantly. An isolated validation at four forest CMA stations demonstrates the OA has increased by 3–10 percentage points, the OE has dropped by 1–8 percentage points, and the CE has dropped by 4–21 percentage points. Therefore, our product has virtually provided more reliable snow knowledge over China, and thereby can better serve for hydrological, climatic, environmental, and other related studies there.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 458
Author(s):  
Sara Karami ◽  
Dimitris Kaskaoutis ◽  
Saviz Kashani ◽  
Mehdi Rahnama ◽  
Alireza Rashki

This study investigates four types of synoptic dust events in the Middle East region, including cyclonic, pre-frontal, post-frontal and Shamal dust storms. For each of these types, three intense and pervasive dust events are analyzed from a synoptic meteorological and numerical simulation perspective. The performance of 9 operational dust models in forecasting these dust events in the Middle East is qualitatively and quantitatively evaluated against Terra-MODIS observations and AERONET measurements during the dust events. The comparison of model AOD outputs with Terra-MODIS retrievals reveals that despite the significant discrepancies, all models have a relatively acceptable performance in forecasting the AOD patterns in the Middle East. The models enable to represent the high AODs along the dust plumes, although they underestimate them, especially for cyclonic dust storms. In general, the outputs of the NASA-GEOS and DREAM8-MACC models present greater similarity with the satellite and AERONET observations in most of the cases, also exhibiting the highest correlation coefficient, although it is difficult to introduce a single model as the best for all cases. Model AOD predictions over the AERONET stations showed that DREAM8-MACC exhibited the highest R2 of 0.78, followed by NASA_GEOS model (R2 = 0.74), which both initially use MODIS data assimilation. Although the outputs of all models correspond to valid time more than 24 h after the initial time, the effect of data assimilation on increasing the accuracy is important. The different dust emission schemes, soil and vegetation mapping, initial and boundary meteorological conditions and spatial resolution between the models, are the main factors influencing the differences in forecasting the dust AODs in the Middle East.


2021 ◽  
Author(s):  
Sarah Henderson ◽  
Kevin Twedt ◽  
Xiaoxiong Xiong
Keyword(s):  

2021 ◽  
Vol 21 (11) ◽  
pp. 9047-9064
Author(s):  
Mahesh Pathakoti ◽  
Aarathi Muppalla ◽  
Sayan Hazra ◽  
Mahalakshmi D. Venkata ◽  
Kanchana A. Lakshmi ◽  
...  

Abstract. The nationwide lockdown was imposed over India from 25 March to 31 May 2020 with varied relaxations from phase I to phase IV to contain the spread of COVID-19. Thus, emissions from industrial and transport sectors were halted during lockdown (LD), which has resulted in a significant reduction of anthropogenic pollutants. The first two lockdown phases were strictly implemented (phase I and phase II) and hence were considered to be total lockdown (TLD) in this study. Satellite-based tropospheric columnar nitrogen dioxide (TCN) from the years 2015 to 2020, tropospheric columnar carbon monoxide (TCC) during 2019/20, and aerosol optical depth (AOD550) from the years 2014 to 2020 during phase I and phase II LD and pre-LD periods were investigated with observations from Aura OMI, Sentinel-5P TROPOMI, and Aqua and Terra MODIS. To quantify lockdown-induced changes in TCN, TCC, and AOD550, detailed statistical analysis was performed on de-trended data using the Student paired statistical t test. Results indicate that mean TCN levels over India showed a dip of 18 % compared to the previous year and also against the 5-year mean TCN levels during the phase I lockdown, which was found to be statistically significant (p value < 0.05) against the respective period. Furthermore, drastic changes in TCN levels were observed over hotspots, namely eastern region and urban cities. For example, there was a sharp decrease of 62 % and 54 % in TCN levels compared to 2019 and against 5-year mean TCN levels over New Delhi with a p value of 0.0002 (which is statistically significant) during total LD. The TCC levels were high in the northeast (NE) region during the phase I LD period, which is mainly attributed to the active fire counts in this region. However, lower TCC levels are observed in the same region due to the diminished fire counts during phase II. Further, AOD550 is reduced over the country by ∼ 16 % (Aqua and Terra) from the 6-year (2014–2019) mean AOD550 levels, with a significant reduction (Aqua MODIS 28 %) observed over the Indo-Gangetic Plain (IGP) region with a p value of ≪ 0.05. However, an increase in AOD550 levels (25 % for Terra MODIS, 15 % for Aqua MODIS) was also observed over central India during LD compared to the preceding year and found significant with a p value of 0.03. This study also reports the rate of change of TCN levels and AOD550 along with statistical metrics during the LD period.


2021 ◽  
Vol 13 (11) ◽  
pp. 2225
Author(s):  
Stefano Corradini ◽  
Lorenzo Guerrieri ◽  
Hugues Brenot ◽  
Lieven Clarisse ◽  
Luca Merucci ◽  
...  

The presence of volcanic clouds in the atmosphere affects air quality, the environment, climate, human health and aviation safety. The importance of the detection and retrieval of volcanic SO2 lies with risk mitigation as well as with the possibility of providing insights into the mechanisms that cause eruptions. Due to their intrinsic characteristics, satellite measurements have become an essential tool for volcanic monitoring. In recent years, several sensors, with different spectral, spatial and temporal resolutions, have been launched into orbit, significantly increasing the effectiveness of the estimation of the various parameters related to the state of volcanic activity. In this work, the SO2 total masses and fluxes were obtained from several satellite sounders—the geostationary (GEO) MSG-SEVIRI and the polar (LEO) Aqua/Terra-MODIS, NPP/NOAA20-VIIRS, Sentinel5p-TROPOMI, MetopA/MetopB-IASI and Aqua-AIRS—and compared to one another. As a test case, the Christmas 2018 Etna eruption was considered. The characteristics of the eruption (tropospheric with low ash content), the large amount of (simultaneously) available data and the different instrument types and SO2 columnar abundance retrieval strategies make this cross-comparison particularly relevant. Results show the higher sensitivity of TROPOMI and IASI and a general good agreement between the SO2 total masses and fluxes obtained from all the satellite instruments. The differences found are either related to inherent instrumental sensitivity or the assumed and/or calculated SO2 cloud height considered as input for the satellite retrievals. Results indicate also that, despite their low revisit time, the LEO sensors are able to provide information on SO2 flux over large time intervals. Finally, a complete error assessment on SO2 flux retrievals using SEVIRI data was realized by considering uncertainties in wind speed and SO2 abundance.


Author(s):  
Abdullahi Muktar ◽  
Sadiq A. Yelwa ◽  
Muhammad Tayyib Bello ◽  
Wali Elekwachi

The flooding of River Rima is an annual issue affecting farmland located within the floodplains. This phenomena causes loss of farm produce and mass destruction of buildings, including roads and bridges in the area. Estimating the farmland affected by the flood will help the policy makers in decision making on how to mitigate the impact of flooding in the affected areas. The Terra/MODIS satellite image with 7-2-1 bands combination was used to classify the image into four landcover types. The area covered by flood was selected to calculate the flood area using Image Calculator module on QGIS software. The class of water was imposed on Digital Elevation Model that was obtained from Environmental Monitoring Satellite called The Shuttle Radar Topography Mission (SRTM). The result shows that River Rima flood occupies about 17,517 km2, equivalent to 1.7 million hectares of farmland that is below 230 meters (ASL). It was recommended that the local authorities and decision makers may use the flood map to showing flood risk zones so as to deter construction beyond the buffer. Farmers should adhere strictly to NiMet’s advice based on flood predictions. The civil engineers should also take note of the maximum water level during flooding so as to apply professional advice when constructing roads and bridges in the area.


Sign in / Sign up

Export Citation Format

Share Document