scholarly journals Forecasting at scale

Author(s):  
Sean J Taylor ◽  
Benjamin Letham

Forecasting is a common data science task that helps organizations with capacity planning, goal setting, and anomaly detection. Despite its importance, there are serious challenges associated with producing reliable and high quality forecasts — especially when there are a variety of time series and analysts with expertise in time series modeling are relatively rare. To address these challenges, we describe a practical approach to forecasting “at scale” that combines configurable models with analyst-in-the-loop performance analysis. We propose a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series. We describe performance analyses to compare and evaluate forecasting procedures, and automatically flag forecasts for manual review and adjustment. Tools that help analysts to use their expertise most effectively enable reliable, practical forecasting of business time series.

Author(s):  
Sean J Taylor ◽  
Benjamin Letham

Forecasting is a common data science task that helps organizations with capacity planning, goal setting, and anomaly detection. Despite its importance, there are serious challenges associated with producing reliable and high quality forecasts — especially when there are a variety of time series and analysts with expertise in time series modeling are relatively rare. To address these challenges, we describe a practical approach to forecasting “at scale” that combines configurable models with analyst-in-the-loop performance analysis. We propose a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series. We describe performance analyses to compare and evaluate forecasting procedures, and automatically flag forecasts for manual review and adjustment. Tools that help analysts to use their expertise most effectively enable reliable, practical forecasting of business time series.


Author(s):  
Sean J Taylor ◽  
Benjamin Letham

Forecasting is a common data science task that helps organizations with capacity planning, goal setting, and anomaly detection. Despite its importance, there are serious challenges associated with producing reliable and high quality forecasts — especially when there are a variety of time series and analysts with expertise in time series modeling are relatively rare. To address these challenges, we describe a practical approach to forecasting “at scale” that combines configurable models with analyst-in-the-loop performance analysis. We propose a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series. We describe performance analyses to compare and evaluate forecasting procedures, and automatically flag forecasts for manual review and adjustment. Tools that help analysts to use their expertise most effectively enable reliable, practical forecasting of business time series.


2015 ◽  
Vol 13 (2) ◽  
pp. 125-142 ◽  
Author(s):  
Antonio Coelho ◽  
Ronald Moura ◽  
Ronaldo Silva ◽  
Anselmo Kamada ◽  
Rafael Guimaraes ◽  
...  

2020 ◽  
Vol 26 (3) ◽  
Author(s):  
Rex W. Douglass ◽  
Thomas Leo Scherer ◽  
Erik Gartzke

AbstractOne of the main ways we try to understand the COVID-19 pandemic is through time series cross section counts of cases and deaths. Observational studies based on these kinds of data have concrete and well known methodological issues that suggest significant caution for both consumers and produces of COVID-19 knowledge. We briefly enumerate some of these issues in the areas of measurement, inference, and interpretation.


2021 ◽  
Vol 48 (4) ◽  
pp. 37-40
Author(s):  
Nikolas Wehner ◽  
Michael Seufert ◽  
Joshua Schuler ◽  
Sarah Wassermann ◽  
Pedro Casas ◽  
...  

This paper addresses the problem of Quality of Experience (QoE) monitoring for web browsing. In particular, the inference of common Web QoE metrics such as Speed Index (SI) is investigated. Based on a large dataset collected with open web-measurement platforms on different device-types, a unique feature set is designed and used to estimate the RUMSI - an efficient approximation to SI, with machinelearning based regression and classification approaches. Results indicate that it is possible to estimate the RUMSI accurately, and that in particular, recurrent neural networks are highly suitable for the task, as they capture the network dynamics more precisely.


Sign in / Sign up

Export Citation Format

Share Document