scholarly journals The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses

Author(s):  
Christophe Hendrickx ◽  
Ricardo Araújo ◽  
Octávio Mateus

The skull-bone quadrate in nonavian theropods is very diverse morphologically alongside the disparity of the group as a whole. However this disparity has been underestimated for taxonomic purposes. In order to evaluate the phylogenetic potential and investigate the evolutionary transformations of the quadrate, we conducted a Catalano-Goloboff phylogenetic morphometric analysis as well as a cladistic analysis using 98 discrete quadrate related characters. The cladistic analysis provides a fully resolved tree mirroring to some degree the classification of nonavian theropods. The quadrate morphology by its own provides a wealth of data with strong phylogenetic signal and allows inference of major trends in the evolution of this bone. Important synapomorphies include: for Abelisauroidea, a lateral ramus extending to the ectocondyle; for Tetanurae, the absence of the lateral process; for Spinosauridae, a medial curvature of the ventral part of the pterygoid ramus occurring just above the mandibular articulation; for Avetheropoda, an anterior margin of the pterygoid flange formed by a roughly parabolic margin; and for Tyrannosauroidea, a semi-oval pterygoid flange shape in medial view. The Catalano-Goloboff phylogenetic morphometric analysis reveals two main morphotypes of the mandibular articulation of the quadrate linked to function. The first morphotype, characterized by an anteroposteriorly broad mandibular articulation with two ovoid/subcircular condyles roughly subequal in size, is found in Ceratosauria, Tyrannosauroidea and Oviraptorosauria. This morphotype allows a very weak displacement of the mandible laterally. The second morphotype is characterized by an elongate and anteroposteriorly narrow mandibular articulation and a long and parabolic/sigmoid ectocondyle. Present in Megalosauroidea, Carcharodontosauridae and Dromaeosauridae, this morphotype permits the lower jaw rami to be displaced laterally when the mouth opened.

2014 ◽  
Author(s):  
Christophe Hendrickx ◽  
Ricardo Araújo ◽  
Octávio Mateus

The skull-bone quadrate in nonavian theropods is very diverse morphologically alongside the disparity of the group as a whole. However this disparity has been underestimated for taxonomic purposes. In order to evaluate the phylogenetic potential and investigate the evolutionary transformations of the quadrate, we conducted a Catalano-Goloboff phylogenetic morphometric analysis as well as a cladistic analysis using 98 discrete quadrate related characters. The cladistic analysis provides a fully resolved tree mirroring to some degree the classification of nonavian theropods. The quadrate morphology by its own provides a wealth of data with strong phylogenetic signal and allows inference of major trends in the evolution of this bone. Important synapomorphies include: for Abelisauroidea, a lateral ramus extending to the ectocondyle; for Tetanurae, the absence of the lateral process; for Spinosauridae, a medial curvature of the ventral part of the pterygoid ramus occurring just above the mandibular articulation; for Avetheropoda, an anterior margin of the pterygoid flange formed by a roughly parabolic margin; and for Tyrannosauroidea, a semi-oval pterygoid flange shape in medial view. The Catalano-Goloboff phylogenetic morphometric analysis reveals two main morphotypes of the mandibular articulation of the quadrate linked to function. The first morphotype, characterized by an anteroposteriorly broad mandibular articulation with two ovoid/subcircular condyles roughly subequal in size, is found in Ceratosauria, Tyrannosauroidea and Oviraptorosauria. This morphotype allows a very weak displacement of the mandible laterally. The second morphotype is characterized by an elongate and anteroposteriorly narrow mandibular articulation and a long and parabolic/sigmoid ectocondyle. Present in Megalosauroidea, Carcharodontosauridae and Dromaeosauridae, this morphotype permits the lower jaw rami to be displaced laterally when the mouth opened.


2014 ◽  
Author(s):  
Christophe Hendrickx ◽  
Ricardo Araújo ◽  
Octávio Mateus

The skull-bone quadrate in nonavian theropods is very diverse morphologically alongside the disparity of the group as a whole. However this disparity has been underestimated for taxonomic purposes. In order to evaluate the phylogenetic potential and investigate the evolutionary transformations of the quadrate, we conducted a Catalano-Goloboff phylogenetic morphometric analysis as well as a cladistic analysis using 98 discrete quadrate related characters. The cladistic analysis provides a fully resolved tree mirroring to some degree the classification of nonavian theropods. The quadrate morphology by its own provides a wealth of data with strong phylogenetic signal and allows inference of major trends in the evolution of this bone. Important synapomorphies include: for Abelisauroidea, a lateral ramus extending to the ectocondyle; for Tetanurae, the absence of the lateral process; for Spinosauridae, a medial curvature of the ventral part of the pterygoid ramus occurring just above the mandibular articulation; for Avetheropoda, an anterior margin of the pterygoid flange formed by a roughly parabolic margin; and for Tyrannosauroidea, a semi-oval pterygoid flange shape in medial view. The Catalano-Goloboff phylogenetic morphometric analysis reveals two main morphotypes of the mandibular articulation of the quadrate linked to function. The first morphotype, characterized by an anteroposteriorly broad mandibular articulation with two ovoid/subcircular condyles roughly subequal in size, is found in Ceratosauria, Tyrannosauroidea and Oviraptorosauria. This morphotype allows a very weak displacement of the mandible laterally. The second morphotype is characterized by an elongate and anteroposteriorly narrow mandibular articulation and a long and parabolic/sigmoid ectocondyle. Present in Megalosauroidea, Carcharodontosauridae and Dromaeosauridae, this morphotype permits the lower jaw rami to be displaced laterally when the mouth opened.


2013 ◽  
Vol 44 (3-4) ◽  
pp. 241-260 ◽  
Author(s):  
Hojun Song ◽  
Ricardo Mariño-Pérez

The current higher classification of the orthopteran superfamily group Acridomorpha is largely based on interpretation of male phallic structures. Internal male genitalia have been considered as an excellent taxonomic character because of a widespread belief that they are less subject to selective pressures from environment, and thus more stable than external characters. Furthermore, based on a notion that evolution proceeds from simple to complex, early taxonomists who shaped the higher classification of Acridomorpha considered those groups with less differentiated and membranous phallic structures as primitive and used this notion to deduce a phylogeny of Acridomorpha. In this study, we test these ideas based on a cladistic analysis of male phallic structures and a character optimization analysis to assess the level of homoplasy and synapomorphy for those phallic characters that have been traditionally used for the Acridomorpha systematics. We also perform an independent test of the phylogenetic utility of male phallic structures based on a molecular phylogeny. We show that while some phallic structures have strong phylogenetic signal, many traditionally used characters are highly homoplasious. However, even those homoplasious characters are often informative in inferring relationships. Finally, we argue that the notion that evolution proceeds in increasing complexity is largely unfounded and difficult to quantify in the higher-level classification of Acridomorpha.


2018 ◽  
Vol 49 (2) ◽  
pp. 103-129 ◽  
Author(s):  
Rogério Botion Lopes ◽  
Fernando Barbosa Noll

Zethus is the largest genus in Eumeninae, with over 250 species. Currently, it is divided in four subgenera: Z. (Zethus), Z. (Zethusculus), Z. (Zethoides) and Z. (Madecazethus). Z. (Zethoides), with 42 species, is subdivided in eight species groups, each considered a phylogenetic unit, that were created without any phylogenetic analysis. Eighteen species of Z. (Zethoides) corresponding to different groups were examined, altogether with terminals from distinct lineages of Zethus, Zethini and Eumenini, to perform a cladistics analysis to verify the proposed divisions. Zethus (Zethoides) and all of its species groups, except for the Z. biglumis group, were monophyletic. Zethus s.s. was paraphyletic in relation to Z. (Madecazethus), Z. (Zethoides) and Ctenochilus. Z. (Zethusculus) was also retrieved paraphyletic. Despite the subgeneric incongruences, the outgroups were too poorly represented to carry a taxonomic modification. Thus, the only alteration was the inclusion of the Z. clypearis group in the Z. biglumis group.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Abdelnasser Ibrahim ◽  
Aspalilah Alias ◽  
Mohamed Swarhib Shafie ◽  
Faridah Mohd Nor

The present systematic review explores the most sexually dimorphic parameters by using geometric morphometric analysis of human skull. An extended search was conducted in Google Scholars and PubMed (published between 2005 and 2017). The main inclusion criteria were research articles published in English, and studies that used geometric morphometric analysis for classification of human skull. The literature search identified 54 potential relevant articles whereby, five had met the inclusion criteria. Most studies reported positive contribution of geometric morphometric as an alternative and accurate tool for classification of unknown human crania. Geometric morphometric method resulted in a high classification accuracy of sexual dimorphism among different populations. Further studies are required to approach the best method used for varied types of postcranial bones equipped with a more advanced meta-analysis of the results.


The rhynchosaur Rhynchosaurus articeps Owen, 1842, from the Middle Triassic of Grinshill, northern Shropshire, England, was a small reptile, about 0.5 m long. About 17 individual animals are represented by skulls, complete skeletons and partial skeletons, and these have permitted detailed restorations. The skull (60-80 mm long) is low and broad at the back, and it shows all of the typical rhynchosaur features of beak-like premaxillae, single median naris, fused parietal, broad maxillary tooth plate and dentary, both with multiple rows of teeth, and a deep lower jaw. The skeleton shows adaptations for fast terrestrial locomotion with a semi-erect hindlimb posture and for scratch-digging with the hind-foot. The skeleton is relatively more slender than that of most other middle and late Triassic rhynchosaurs, but this is probably an allometric effect of its much smaller size (they are typically 1-2 m long). A further species of Rhynchosaurus from Warwick, named here R. brodiei , is represented by 15 specimens of partial skulls, tooth-bearing elements, and isolated postcranial bones. It was slightly larger than R. articeps , with a typical skull length of 90 mm, and estimated body length of 0.6 m, but the skull length ranged up to 140 mm. It differs from R. articeps in having a much larger jugal in the cheek area, and in the greater height and breadth of the skull. The isolated maxillary fragments from Bromsgrove probably also belong to R. brodiei . The third species of Rhynchosaurus from Devon, named here R. spenceri , is now known from numerous specimens of at least 25 individuals, most of which were collected recently. These show a range in estimated skull length from 40 to 170 mm, but most specimens are at the upper end of that range, with an average skull length of 140 mm, and an estimated total body length of 0.9-1.0 m R. spenceri differs from R. articeps and R. brodiei in having a skull that is broader than it is long (otherwise a character of late Triassic rhynchosaurs), and it shares the large jugal character with R. brodiei . Teeth are not well preserved in R. articeps, but several specimens of R. brodiei and R. spenceri give detailed information. The pattern of wear, and the nature of the jaw joint, suggest that Rhynchosaurus had a precision-shear bite, as in other rhynchosaurs, with no back and forwards motion. The maxilla had two grooves, a major and a minor one, which received two matching ridges of the dentary on occlusion. The multiple rows of teeth on maxilla and dentary, and the surrounding bone, wore down as uniform units. The diet was probably tough vegetation, which was dug up by scratch-digging, raked together with the hands or the premaxillary beak, and manipulated in the mouth by a strong tongue. Rhynchosaurus is found variously in fluvial-intertidal deposits with evidence of desiccation (Grinshill, Warwick, Bromsgrove), and fluvial-aeolian deposits laid down in arid conditions with occasional flash floods (Devon). The bones have generally been transported (Warwick, Bromsgrove, Devon), but the Grinshill specimens are largely complete and undisturbed. The associated floras and faunas at Warwick, Bromsgrove, and Devon include pteridophytes, gymnospermopsids, bivalves, scorpions, freshwater fish, temnospondyl amphibians and reptiles (macrocnemids, thecodontians, ?procolophonids). Rhynchosaurs are archosauromorph diapsids, possibly related to the enigmatic Trilophosaurus, and a sister group to Prolacertiformes + Archosauria. A cladistic analysis of Rhynchosauria reveals one major subgroup, the Hyperodapedontinae ( Hyperodapedonand and Scaphonyx ), which is late Triassic in age. The earlier rhynchosaurs, including the middle Triassic Stenaulorhynchus and Rhynchosaurus , appear to form successively closer outgroups to the Hyperodapedontinae. The three species of Rhynchosaurus share only one possible synapomorphy in comparison with Stenaluorhynchus : The dentary is well over half the length of the lower jaw. The ‘Rhynchosaurinae’ ( Stenaulorhynchus and Rhynchosaurus ) was not established as a monophyletic group in the present analysis. These two genera share two postulated synapomorphies: the occipital condyle lies well in front of the quadrates, and there are two grooves on the maxilla and two ridges on the dentary. A third postulated synapomorphy, the presence of a single row of teeth on the pterygoid, has not been confirmed in this study for either Rhynchosaurus or Stenaulorhynchus . However, these postulated synapomorphies are outweighed by the synapomorphies that Rhynchosaurus shares with the Hyperodapedontinae. The specimens of Rhynchosaurus have been used as biostratigraphic indicators for the English middle Triassic, indicating Anisian to early Ladinian ages. The three species can be arranged in a sequence from ‘most prim itive’ to ‘most advanced’, but this cannot be used confidently to give a stratigraphic sequence.


1997 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
A. D. Austin ◽  
and S. A. Field

The morphology of the sclerotised components of the ovipositor system is comprehensively surveyed for scelionid and platygastrid wasps, with information being assessed for 120 genera and 220 species. A diagnosis for the ovipositor system is presented for most genera to complement existing generic descriptions. Two previously described and mechanically different forms of the ovipositor system are recognised: (1) the Ceratobaeus-type that is extended and retracted by antagonistic muscles and (2) the Scelio-type that is operated by changes in hydrostatic pressure, where the ovipositor is extended at the end of an elongate telescopic tube derived from expanded intersegmental membrane between metasomal segments 6 and 7. Comparison of these forms with the supposed ground plan for the Scelionidae strongly indicates that the Scelio-type is apomorphic, that it defines a monophyletic group associated with orthopteran host eggs, and that it comprises the tribes Scelionini, Calliscelionini, most Psilanteridini, Aradophagini, Neoscelionini, Platyscelionini, Doddiellini and four genera misplaced within the Sparasionini and Baryconini (Archaeoteleia Masner, Bracalba Dodd, Chromoteleia Ashmead and Oxyscelio Kieffer), as well as Sceliacanthella Dodd. Until a more robust classification of the superfamily is forthcoming, it is proposed that this group be informally referred to as the 'Scelionini sensu lato'. Further, seven genera (Habroteleia Kieffer, Palpoteleia Kieffer, Anteris Foerster, Fusicornia Risbec, Leptoteleia Kieffer, Opisthacantha Ashmead and Styloteleia Kieffer) are misplaced in the Calliscelionini and Psilanteridini because they possess the Ceratobaeus-type system. Nixonia Masner, Sparasion Latreille and Sceliomorpha Ashmead (Sparasionini) are considered to have the most primitive ovipositor system because they possess a Ceratobaeus-type system, and sub-basally fused lateral and latero-ventral apodemes, the latter being loosely attached to sternite 6. Sparasion and Sceliomorpha also have very short lateral apodemes and this, in conjunction with the form of the apodemes, can be considered to be the ground plan for the superfamily. The Platygastridae all possess a modified ovipositor system but, nonetheless, one that in most cases is extended and retracted by musculature (i.e. Ceratobaeus-type). In particular, the system in most platygastrids is typified by having metasomal tergite 8 and associated cerci missing, the lateral apodemes short and forming a U-shape, and the ovipositor assembly generally robust. Only one of approximately 30 genera examined, Acerotella Masner, has very elongate apodemes, as in the Scelionidae. Many platygastrids also have a pair of latero-ventral apodemes, a presumed plesiomorphic character, rather than a single medial apodeme on stemite 6, which is the case for many Scelionidae. The most highly modified system is found in Isostasius Foerster and some Synopeas (Sactogaster) Foerster, where the ovipositor assembly is coiled vertically or partly so and the apodemes are greatly reduced. Generally, characters associated with the ovipositor system do not provide any independent support for the most recent higher-level classification of platygastrids, although they show substantial potential for more accurate definition of genera. A preliminary cladistic analysis of 14 ovipositor characters supports the monophyly of five clades that correspond to the Scelionini s. l., the Scelionidae (minus the Sparasionini sensu stricto), the Sparasionini s. str., the Platygastridae, and the Sparasioriini s. str. + Platygastridae. Overall, results from this study will provide baseline information on the ovipositor system as a prelude to a more complete phylogenetic analysis of the superfamily including external morphological characters. Although no new classification for the Scelionidae and Platygastridae is proposed, their higher-level taxonomy is reviewed and discussed and cases identified where, on the basis of ovipositor morphology, taxa (tribes and/or genera) apparently form monophyletic groups, and where taxa are misplaced. Finally, the status of the major higher-level groups within the superfamily is discussed, as is the available evidence to support their monophyly.


Zootaxa ◽  
2006 ◽  
Vol 1109 (1) ◽  
pp. 1 ◽  
Author(s):  
SHANE T. AHYONG

The generic and familial structure of the clawed lobsters, Homarida, was studied by cladistic analysis. Previous phylogenetic studies of the clawed lobster genera have focussed on the putative nephropoid families: Nephropidae, Thaumastochelidae, and Chilenophoberidae. Recent high-level studies of decapod phylogeny, however, show that in addition to Nephropidae and Thaumastochelidae (both Nephropoidea), the Enoplometopidae (Enoplometopoidea) are ingroup homaridans. Conversely, the homaridan placement of Chilenophoberidae has been questioned, instead possibly having astacidan affinities. This study, building on previous analyses, incorporates additional taxa and data to examine phylogenetic relationships of the genera and families. Analyses were conducted including both extant and extinct taxa (analysis A), and with extant taxa only (analysis B). The resulting topologies from analyses A & B were largely compatible indicating that the phylogenetic signal among homaridan genera was not significantly impacted by fossil taxa. Results support recognition of Nephropoidea, comprising Thaumastochelidae and Nephropidae, and Enoplometopoidea, comprising Enoplometopidae and Uncinidae. Affinities of Chilenophoberidae were found to lie with Astacida rather than Homarida, albeit with weak jackknife support. Thaumastochelidae is strongly supported as monophyletic, with two extant genera and the extinct Oncopareia. Present data, however, are equivocal about an independently monophyletic Nephropidae.


2019 ◽  
Vol 93 (3) ◽  
pp. 260-276 ◽  
Author(s):  
G. Pérez-Ponce de León ◽  
D.I. Hernández-Mena

AbstractDigenea Carus, 1863 represent a highly diverse group of parasitic platyhelminths that infect all major vertebrate groups as definitive hosts. Morphology is the cornerstone of digenean systematics, but molecular markers have been instrumental in searching for a stable classification system of the subclass and in establishing more accurate species limits. The first comprehensive molecular phylogenetic tree of Digenea published in 2003 used two nuclear rRNA genes (ssrDNA = 18S rDNA and lsrDNA = 28S rDNA) and was based on 163 taxa representing 77 nominal families, resulting in a widely accepted phylogenetic classification. The genetic library for the 28S rRNA gene has increased steadily over the last 15 years because this marker possesses a strong phylogenetic signal to resolve sister-group relationships among species and to infer phylogenetic relationships at higher levels of the taxonomic hierarchy. Here, we have updated the database of 18S and 28S rRNA genes until December 2017, we have added newly generated 28S rDNA sequences and we have reassessed phylogenetic relationships to test the current higher-level classification of digeneans (at the subordinal and subfamilial levels). The new dataset consisted of 1077 digenean taxa allocated to 106 nominal families for 28S and 419 taxa in 98 families for 18S. Overall, the results were consistent with previous higher-level classification schemes, and most superfamilies and suborders were recovered as monophyletic assemblages. With the advancement of next-generation sequencing (NGS) technologies, new phylogenetic hypotheses from complete mitochondrial genomes have been proposed, although their power to resolve deep levels of trees remains controversial. Since data from NGS methods are replacing other widely used markers for phylogenetic analyses, it is timely to reassess the phylogenetic relationships of digeneans with conventional nuclear rRNA genes, and to use the new analysis to test the performance of genomic information gathered from NGS, e.g. mitogenomes, to infer higher-level relationships of this group of parasitic platyhelminths.


Sign in / Sign up

Export Citation Format

Share Document