scholarly journals Osteogenic potential of primary stem cells derived from the human dental pulp is enhanced by carboxymethyl cellulose/chitosan scaffold doped with wollastonite particles

2021 ◽  
Vol 9 ◽  
pp. 1-6
2019 ◽  
Vol 35 (12) ◽  
pp. 1740-1749 ◽  
Author(s):  
N.K. Oliveira ◽  
T.H.C. Salles ◽  
A.C. Pedroni ◽  
L. Miguita ◽  
M.A. D’Ávila ◽  
...  

2019 ◽  
Vol 14 (2) ◽  
pp. 102 ◽  
Author(s):  
AliceK Abdel Aleem ◽  
EmanE.A. Mohammed ◽  
Mohamed El-Zawahry ◽  
Abdel RazikH Farrag ◽  
NahlaN Abdel Aziz ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6172
Author(s):  
Anna Labedz-Maslowska ◽  
Natalia Bryniarska ◽  
Andrzej Kubiak ◽  
Tomasz Kaczmarzyk ◽  
Malgorzata Sekula-Stryjewska ◽  
...  

Human dental pulp harbours unique stem cell population exhibiting mesenchymal stem/stromal cell (MSC) characteristics. This study aimed to analyse the differentiation potential and other essential functional and morphological features of dental pulp stem cells (DPSCs) in comparison with Wharton’s jelly-derived MSCs from the umbilical cord (UC-MSCs), and to evaluate the osteogenic differentiation of DPSCs in 3D culture with a hypoxic microenvironment resembling the stem cell niche. Human DPSCs as well as UC-MSCs were isolated from primary human tissues and were subjected to a series of experiments. We established a multiantigenic profile of DPSCs with CD45−/CD14−/CD34−/CD29+/CD44+/CD73+/CD90+/CD105+/Stro-1+/HLA-DR− (using flow cytometry) and confirmed their tri-lineage osteogenic, chondrogenic, and adipogenic differentiation potential (using qRT-PCR and histochemical staining) in comparison with the UC-MSCs. The results also demonstrated the potency of DPSCs to differentiate into osteoblasts in vitro. Moreover, we showed that the DPSCs exhibit limited cardiomyogenic and endothelial differentiation potential. Decreased proliferation and metabolic activity as well as increased osteogenic differentiation of DPSCs in vitro, attributed to 3D cell encapsulation and low oxygen concentration, were also observed. DPSCs exhibiting elevated osteogenic potential may serve as potential candidates for a cell-based product for advanced therapy, particularly for bone repair. Novel tissue engineering approaches combining DPSCs, 3D biomaterial scaffolds, and other stimulating chemical factors may represent innovative strategies for pro-regenerative therapies.


2015 ◽  
Vol 93 (4) ◽  
pp. 298-305 ◽  
Author(s):  
Tae-Hyung Lee ◽  
Won-Tae Kim ◽  
Chun Jeih Ryu ◽  
Young-Joo Jang

Basic fibroblast growth factor (bFGF or FGF-2) is widely used to modulate the proliferation and differentiation of certain cell types. An expression and purification system for recombinant human FGF-2 in Escherichia coli was established for the purpose of securing a continuous supply of this protein. The purified recombinant FGF-2 significantly increased the population of human embryonic stem cells. The optimal concentrations of FGF-2 for cell proliferative induction in various adult stem cells including human dental pulp stem cells, full term human periodontal ligament stem cells, human gingival fibroblasts, mesenchymal stem cells, and osteogenic oseosarcoma were established in a dose-dependent manner. When cells were treated with recombinant FGF-2 for 6 days before osteogenic induction, the mRNA expression of the bone markers was upregulated in cells originated from human dental pulp tissue, indicating that pretreatment with FGF-2 during culture increase stem cell/progenitor population and osteogenic potential.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Margherita Maioli ◽  
Valentina Basoli ◽  
Sara Santaniello ◽  
Sara Cruciani ◽  
Alessandro Palmerio Delitala ◽  
...  

Human dental pulp stem cells (hDPSCs) have shown relevant potential for cell therapy in the orthopedic and odontoiatric fields. The optimization of their osteogenic potential is currently a major challenge. Vascular endothelial growth factor A (VEGF A) has been recently reported to act as a major conductor of osteogenesisin vitroandin vivo. Here, we attempted to prime endogenous VEGF A expression without the need for viral vector mediated gene transfer technologies. We show that hDPSCs exposure to a mixture of hyaluronic, butyric, and retinoic acids (HA + BU + RA) induced the transcription of a gene program of osteogenesis and the acquirement of an osteogenic lineage. Such response was also elicited by cell exposure to melatonin, a pleiotropic agent that recently emerged as a remarkable osteogenic inducer. Interestingly, the commitment to the osteogenic fate was synergistically enhanced by the combinatorial exposure to a conditioned medium containing both melatonin and HA + BU + RA. Thesein vitroresults suggest thatin vivoosteogenesis might be improved and further studies are needed.


2021 ◽  
Vol 11 (9) ◽  
pp. 915
Author(s):  
Shankargouda Patil ◽  
Rodolfo Reda ◽  
Nezar Boreak ◽  
Hasan Ahmad Taher ◽  
Abdulaziz Abu Melha ◽  
...  

Background: dental pulp-derived stem cells are easy to access and collect and are an excellent source of stem cells for regenerative therapy. These cells can interact with many biomolecules and scaffolds and can pass on the instructive signals to the sites of regeneration where they are used. In this regard cordycepin, a potential biomolecule derived from medicinal mushrooms with a spectrum of bioactive properties such as antioxidant, anti-inflammatory, and anticancer has not yet been tested for its effect on human dental pulp stem cells. Objective: the objective of the present study was to assess the in vitro adipogenic and osteogenic differentiation potential of human dental pulp stem cells with or without induction after administration of cordycepin. Materials and methods: human dental pulp stem cells DPSCs were isolated from a healthy permanent tooth extracted for orthodontic purposes after obtaining informed consent. Flow cytometry technique was used to assess the surface markers of these cells such as CD73, CD90, and CD105, CD34, CD45, and HLA-DR. Further, an MTT assay was performed on the cells after subjecting them to various concentrations of cordycepin. Following this, the adipogenic and osteogenic potential of the dental pulp stem cells was assessed with or without induction under the influence/absence of 5 µM of cordycepin. The results obtained were statistically analyzed and documented. Results: it was found that the dental pulp stem cells showed strong positive expression for CD73, CD90, and CD105 and faint expression of CD34, CD45, and HLA-DR. MTT assay revealed that 5 µM was the optimum concentration of cordycepin for all the assays. Concerning adipogenesis experiments, there was a statistically significant lowering of all the 4 adipogenesis-related genes PPARγ, FABP4, LPL, and C/EBPα following cordycepin treatment in the presence of induction compared to the only induction group and untreated control cells (p < 0.05). In connection with osteogenesis, was found that there was a statistically significant increase in the expression of RUNX2, COL1A1, OSX and OCN genes along with the increase in alkaline phosphatase and alizarin red staining in the DPSC treated with cordycepin along with the presence of induction and simultaneous addition of PDTC compared to the control untreated cells and cells treated with induction and simultaneous addition of PDTC (p < 0.05). Conclusion: cordycepin can be exploited for its osteopromotive properties and can be used as a bioactive molecule alongside the administration of dental pulp stem cells in the area of regenerative biology and medicine.


Sign in / Sign up

Export Citation Format

Share Document