Rapid Assessment and Containment of Candida auris Transmission in Postacute Care Settings—Orange County, California, 2019

2021 ◽  
Author(s):  
Ellora N. Karmarkar ◽  
Kathleen O’Donnell ◽  
Christopher Prestel ◽  
Kaitlin Forsberg ◽  
Lalitha Gade ◽  
...  
2020 ◽  
Vol 41 (S1) ◽  
pp. s76-s77
Author(s):  
Kathleen O'Donnell ◽  
Ellora Karmarkar ◽  
Brendan R Jackson ◽  
Erin Epson ◽  
Matthew Zahn

Background: In February 2019, the Orange County Health Care Agency (OCHCA) identified an outbreak of Candida auris, an emerging fungus that spreads rapidly in healthcare facilities. Patients in long-term acute-care hospitals (LTACHs) and skilled nursing facilities that provide ventilator care (vSNFs) are at highest risk for C. auris colonization. With assistance from the California Department of Public Health and the Centers for Disease Control and Prevention, OCHCA instituted enhanced surveillance, communication, and screening processes for patients colonized with or exposed to C. auris. Method: OCHCA implemented enhanced surveillance by conducting point-prevalence surveys (PPSs) at all 3 LTACHs and all 14 vSNFs in the county. Colonized patients were identified through axilla/groin skin swabbing with C. auris detected by PCR and/or culture. In facilities where >1 C. auris colonized patient was found, PPSs were repeated every 2 weeks to identify ongoing transmission. Retrospective case finding was instituted at 2 LTACHs with a high burden of colonized patients; OCHCA contacted patients discharged after January 1, 2019, and offered C. auris screening. OCHCA tracked the admission or discharge of all colonized patients, and facilities with ongoing transmission were required to report transfers of any patient, regardless of colonization status. OCHCA tracked all patients discharged from facilities with ongoing transmission to ensure that accepting facilities conducted admission surveillance testing of exposed patients and implemented appropriate environmental and contact precautions. Result: From February–October 2019, 192 colonized patients were identified. All 3 LTACHs and 6 of 14 VSNFs had at least 1 C. auris–colonized patient identified on initial PPS, and 2 facilities had ongoing transmission identified on serial PPS. OCHCA followed 96 colonized patients transferred a total of 230 times (an average of 2.4 transfers per patient) (Fig. 1) and 677 exposed patients discharged from facilities with ongoing transmission (Fig. 2). Admission screening of 252 exposed patients on transfer identified 13 (5.2%) C. auris–colonized patients. As of November 1, 2019, these 13 patients were admitted 21 times to a total of 6 acute-care hospitals, 2 LTACHs, and 3 vSNFs. Transferring facilities did not consistently communicate the colonized patient’s status and the requirements for isolation and testing of exposed patients. Conclusion: OCHCA oversight of interfacility transfer, though labor-intensive, improved identification of patients colonized with C. auris and implementation of appropriate environmental and contact precautions, reducing the risk of transmission in receiving healthcare facilities.Funding: NoneDisclosures: None


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S993-S993 ◽  
Author(s):  
Ellora Karmarkar ◽  
Ellora Karmarkar ◽  
Kathleen O’Donnell ◽  
Christopher Prestel ◽  
Kaitlin Forsberg ◽  
...  

Abstract Background Patients in long-term acute care hospitals (LTACHs) and skilled nursing facilities with ventilator units (VSNFs) are at high risk for Candida auris colonization; among patients colonized with this emerging pathogen, 5%–10% develop invasive disease with >45% mortality. In September 2018, a California LTACH-affiliated laboratory began enhanced C. auris surveillance by classifying species of Candida isolated from routine urine specimens. In February 2019, the first known Southern California case was detected in an Orange County (OC) LTACH; the patient had not traveled outside the region, indicating local acquisition. We performed point prevalence surveys (PPS) and infection prevention (IP) assessments at all OC LTACHs and VSNF subacute units to identify patients colonized with C. auris and control transmission. Methods During March–August 2019, we conducted PPS at facilities by collecting composite axilla and groin swabs for C. auris polymerase chain reaction testing and reflex culture from all patients who assented. Facilities with ≥1 C. auris-colonized patient repeated a PPS every 2 weeks to assess for new transmission. Isolate relatedness was assessed by whole-genome sequencing (WGS). We evaluated hand hygiene (HH) adherence, access to alcohol-based hand rubs (ABHR), and cleaning of high-touch surfaces to guide IP recommendations. Results The first PPS at all OC LTACHs (n = 3) and adult VSNFs (n = 14) identified 45 C. auris-colonized patients in 3 (100%) LTACHs and 6 (43%) VSNFs; after repeated PPS, the total count reached 124. Most patients (70%) were at 2 facilities (Table 1). Three of 124 patients developed candidemia. To date, isolates from 48 patients have completed WGS; all were highly related (<11 single-nucleotide polymorphisms) in the African clade. Of 9 facilities with C. auris, 5 had HH adherence < 50%, 3 had limited ABHR, and at 2, <60% of assessed high-touch surfaces were clean. We recommended regular HH and cleaning audits, and increased ABHR. Conclusion Our investigation, prompted by enhanced surveillance, identified C. auris at 9 OC facilities. WGS indicated a single introduction and local transmission. Early detection, followed by rapid county-wide investigation and IP support, enabled containment efforts for C. auris in OC. Disclosures All authors: No reported disclosures.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Xin Hou ◽  
Annie Lee ◽  
Cristina Jiménez-Ortigosa ◽  
Milena Kordalewska ◽  
David S. Perlin ◽  
...  

ABSTRACT Candida auris is an emerging multidrug-resistant yeast that can cause serious invasive infections. The accurate and rapid assessment of antifungal resistance is important for effective patient management. A novel and highly accurate diagnostic platform was established for the rapid identification of ERG11 mutations conferring azole resistance and FKS1 mutations associated with echinocandin resistance in C. auris. Using allele-specific molecular beacons and DNA melting curve analysis following asymmetric PCR, a duplex ERG11 assay and a simplex FKS1 HS1 assay were developed to identify the most prominent resistance-associated mutations (Y132F and K143R in ERG11; S639F in FKS1 HS1) within 2 h. Assays were validated by testing a panel of 94 C. auris clinical isolates in a blind manner. The molecular diagnostic results from the assays were 100% concordant with DNA sequencing results. This platform has the potential to overcome the deficiencies of existing in vitro susceptibility-based assays to identify azole- and/or echinocandin-resistant C. auris, and thus, it holds promise as a surrogate diagnostic method to direct antifungal therapy more effectively.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
Milena Kordalewska ◽  
Annie Lee ◽  
Yanan Zhao ◽  
David S. Perlin

ABSTRACT Accurate and rapid assessment of Candida auris antifungal drug resistance is crucial for effective infection prevention and control actions, as well as for patient management. Here, performance of a molecular diagnostic platform, enabling rapid identification of FKS1 and ERG11 mutations conferring echinocandin and azole resistance, respectively, was evaluated on a panel of clinical skin swabs. Gene sequencing and antifungal susceptibility testing were used as the gold standard. All swabs were correctly categorized as harboring wild-type or mutant C. auris.


Author(s):  
M.T. Otten ◽  
P.R. Buseck

ALCHEMI (Atom Location by CHannelling-Enhanced Microanalysis) is a TEM technique for determining site occupancies in single crystals. The method uses the channelling of incident electrons along specific crystallographic planes. This channelling results in enhanced x-ray emission from the atoms on those planes, thereby providing the required site-occupancy information. ALCHEMI has been applied with success to spinel, olivine and feldspar. For the garnets, which form a large group of important minerals and synthetic compounds, the channelling effect is weaker, and significant results are more difficult to obtain. It was found, however, that the channelling effect is pronounced for low-index zone-axis orientations, yielding a method for assessing site occupancies that is rapid and easy to perform.


Sign in / Sign up

Export Citation Format

Share Document