scholarly journals A Reference Point Approach to Bi-Objective Dynamic Portfolio Optimization

2009 ◽  
Vol 3 (2) ◽  
pp. 73-85 ◽  
Author(s):  
Bartosz Sawik

The portfolio selection problem presented in this paper is formulated as a biobjective mixed integer program. The portfolio selection problem considered is based on a dynamic model of investment, in which the investor buys and sells securities in successive investment periods. The problem objective is to dynamically allocate the wealth on different securities to optimize by reference point method the portfolio expected return and the probability that the return is not less than a required level. In computational experiments the dataset of daily quotations from the Warsaw Stock Exchange were used.

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1639
Author(s):  
Dazhi Wang ◽  
Yanhua Chen ◽  
Hongfeng Wang ◽  
Min Huang

In this research, we study the non-parametric portfolio selection problem with Value at Risk (VaR) minimization and establish a new enhanced Mixed Integer Linear Programming (MILP) formulation to obtain the optimal solutions considering the symmetric property of VaR. We identify that the new MILP formulation can significantly reduce the computation burden of the MILP solver CPLEX. To solve larger-scale practical portfolio selection problems in reasonable computation time, we also develop the Particle Swarm Optimization (PSO) algorithm integrating an efficient Fast Feasible Solution Detection (FFSD) scheme to obtain the near-optimal solutions. Using the simulated datasets with different distribution parameters and skewness and kurtosis patterns, some preliminary numerical results are provided to show the efficiency of the new formulation and FFSD scheme.


Filomat ◽  
2018 ◽  
Vol 32 (3) ◽  
pp. 991-1001
Author(s):  
Shokoofeh Banihashemi ◽  
Ali Azarpour ◽  
Marziye Kaveh

This paper is a novel work of portfolio-selection problem solving using multi objective model considering four parameters, Expected return, downside beta coefficient, semivariance and conditional value at risk at a specified confidence level. Multi-period models can be defined as stochastic models. Early studies on portfolio selection developed using variance as a risk measure; although, theories and practices revealed that variance, considering its downsides, is not a desirable risk measure. To increase accuracy and overcoming negative aspects of variance, downside risk measures like semivarinace, downside beta covariance, value at risk and conditional value at risk was other risk measures that replaced in models. These risk measures all have advantages over variance and previous works using these parameters have shown improvements in the best portfolio selection. Purposed models are solved using genetic algorithm and for the topic completion, numerical example and plots to measure the performance of model in four dimensions are provided.


2004 ◽  
Vol 09 (01) ◽  
Author(s):  
Teresa León ◽  
Vicente Liern ◽  
Paulina Marco ◽  
Enriqueta Vercher ◽  
José Vicente Segura

2016 ◽  
Vol 46 (2) ◽  
pp. 234-248 ◽  
Author(s):  
Erin J. Belval ◽  
Yu Wei ◽  
Michael Bevers

Wildfire behavior is a complex and stochastic phenomenon that can present unique tactical management challenges. This paper investigates a multistage stochastic mixed integer program with full recourse to model spatially explicit fire behavior and to select suppression locations for a wildland fire. Simplified suppression decisions take the form of “suppression nodes”, which are placed on a raster landscape for multiple decision stages. Weather scenarios are used to represent a distribution of probable changes in fire behavior in response to random weather changes, modeled using probabilistic weather trees. Multistage suppression decisions and fire behavior respond to these weather events and to each other. Nonanticipativity constraints ensure that suppression decisions account for uncertainty in weather forecasts. Test cases for this model provide examples of fire behavior interacting with suppression to achieve a minimum expected area impacted by fire and suppression.


1976 ◽  
Vol 8 (4) ◽  
pp. 443-446
Author(s):  
W G Truscott

This note examines a previously published model for dynamic location—allocation analysis. The usefulness of this model is enhanced by reformulating the problem as an operational zero-one, mixed-integer program while retaining the intent of the original version.


Sign in / Sign up

Export Citation Format

Share Document