scholarly journals Research on the peak energy spectrum of the solar cosmic ray ground level enhancement event (GLE72)

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Mishev

The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.


1981 ◽  
Vol 94 ◽  
pp. 397-398
Author(s):  
H. S. Ahluwalia

Sekido and Murakami (1958) proposed the existence of the heliosphere to explain the scattered component of the solar cosmic rays. The heliosphere of their conception is a spherical shell around the sun. The shell contains a highly-irregular magnetic field and serves to scatter the cosmic rays emitted by the sun. It thereby gives rise to an isotropic component of solar cosmic rays, following the maximum in the ground level enhancement (GLE). Meyer et al. (1956) showed that a similar picture applies to the GLE of 23 February 1956. They conclude that the inner and outer radii of the shell should be 1.4 AU and 5 AU respectively. They suggest that a shell is formed by the “pile-up” of the solar wind under pressure exerted by the interstellar magnetic field, as suggested by Davis (1955).


Solar Physics ◽  
2019 ◽  
Vol 294 (9) ◽  
Author(s):  
G. N. Kichigin ◽  
M. V. Kravtsova ◽  
V. E. Sdobnov

2005 ◽  
Vol 23 (6) ◽  
pp. 2281-2291 ◽  
Author(s):  
A. Belov ◽  
E. Eroshenko ◽  
H. Mavromichalaki ◽  
C. Plainaki ◽  
V. Yanke

Abstract. The 23 February 1956 ground level enhancement of the solar cosmic ray intensity (GLE05) is the most famous among the proton events observed since 1942. But we do not have a great deal of information on this event due to the absence of solar wind and interplanetary magnetic field measurements at that time. Furthermore, there were no X-Ray or gamma observations and the information on the associated flare is limited. Cosmic ray data was obtained exclusively by ground level detectors of small size and in some cases of a non-standard design. In the present work all available data from neutron monitors operating in 1956 were analyzed, in order to develop a model of the solar cosmic ray behavior during the event. The time-dependent characteristics of the cosmic ray energy spectrum, cosmic ray anisotropy, and differential and integral fluxes have been evaluated utilizing different isotropic and anisotropic models. It is shown that the most outstanding features of this proton enhancement were a narrow and extremely intense beam of ultra-relativistic particles arriving at Earth just after the onset and the unusually high maximum solar particle energy. However, the contribution of this beam to the overall solar particle density and fluency was not significant because of its very short duration and small width. Our estimate of the integral flux for particles with energies over 100 MeV places this event above all subsequent. Perhaps the number of accelerated low energy particles was closer to a record value, but these particles passed mainly to the west of Earth. Many features of this GLE are apparently explained by the peculiarity of the particle interplanetary propagation from a remote (near the limb) source. The quality of the available neutron monitor data does not allow us to be certain of some details; these may be cleared up by the incorporation into the analysis of data from muonic telescopes and ionization chambers operating at that time. Keywords. Interplanatary physics (Cosmic rays; Energetic particles) – Solar physics, astrophysics and astronomy (Flares and mass injections)


Sign in / Sign up

Export Citation Format

Share Document