scholarly journals Short- and Medium-Term Induced Ionization in the Earth Atmosphere by Galactic and Solar Cosmic Rays

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Mishev

The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.

1981 ◽  
Vol 94 ◽  
pp. 397-398
Author(s):  
H. S. Ahluwalia

Sekido and Murakami (1958) proposed the existence of the heliosphere to explain the scattered component of the solar cosmic rays. The heliosphere of their conception is a spherical shell around the sun. The shell contains a highly-irregular magnetic field and serves to scatter the cosmic rays emitted by the sun. It thereby gives rise to an isotropic component of solar cosmic rays, following the maximum in the ground level enhancement (GLE). Meyer et al. (1956) showed that a similar picture applies to the GLE of 23 February 1956. They conclude that the inner and outer radii of the shell should be 1.4 AU and 5 AU respectively. They suggest that a shell is formed by the “pile-up” of the solar wind under pressure exerted by the interstellar magnetic field, as suggested by Davis (1955).


2005 ◽  
Vol 23 (6) ◽  
pp. 2281-2291 ◽  
Author(s):  
A. Belov ◽  
E. Eroshenko ◽  
H. Mavromichalaki ◽  
C. Plainaki ◽  
V. Yanke

Abstract. The 23 February 1956 ground level enhancement of the solar cosmic ray intensity (GLE05) is the most famous among the proton events observed since 1942. But we do not have a great deal of information on this event due to the absence of solar wind and interplanetary magnetic field measurements at that time. Furthermore, there were no X-Ray or gamma observations and the information on the associated flare is limited. Cosmic ray data was obtained exclusively by ground level detectors of small size and in some cases of a non-standard design. In the present work all available data from neutron monitors operating in 1956 were analyzed, in order to develop a model of the solar cosmic ray behavior during the event. The time-dependent characteristics of the cosmic ray energy spectrum, cosmic ray anisotropy, and differential and integral fluxes have been evaluated utilizing different isotropic and anisotropic models. It is shown that the most outstanding features of this proton enhancement were a narrow and extremely intense beam of ultra-relativistic particles arriving at Earth just after the onset and the unusually high maximum solar particle energy. However, the contribution of this beam to the overall solar particle density and fluency was not significant because of its very short duration and small width. Our estimate of the integral flux for particles with energies over 100 MeV places this event above all subsequent. Perhaps the number of accelerated low energy particles was closer to a record value, but these particles passed mainly to the west of Earth. Many features of this GLE are apparently explained by the peculiarity of the particle interplanetary propagation from a remote (near the limb) source. The quality of the available neutron monitor data does not allow us to be certain of some details; these may be cleared up by the incorporation into the analysis of data from muonic telescopes and ionization chambers operating at that time. Keywords. Interplanatary physics (Cosmic rays; Energetic particles) – Solar physics, astrophysics and astronomy (Flares and mass injections)


2021 ◽  
Author(s):  
Du Toit Strauss

<p>Galactic cosmic rays, and sporadic high energy solar energetic particles, are energetic enough to pierce the Earth’s protective magnetosphere and interact with the atmosphere. Here, a secondary particle cascade leads to enhanced radiation levels which is of importance, for instance, to aviation dosimetry and related studies. At ground level, these secondary particles can be observed (indirectly) by means of neutron monitors, and this has been done for more than 70 years, providing a valuable long-term cosmic ray record. In this talk, we introduce the different primary particle populations, discuss their acceleration and modulation, and connect this with long-term neutron monitor measurements.</p>


2021 ◽  
Author(s):  
Jannis Weimar ◽  
Paul Schattan ◽  
Martin Schrön ◽  
Markus Köhli ◽  
Rebecca Gugerli ◽  
...  

<p><span>Secondary cosmic-ray neutrons may be effectively used as a proxy for environmental hydrogen content at the hectare scale. These neutrons are generated mostly in the upper layers of the atmosphere within particle showers induced by galactic cosmic rays and other secondary particles. Below 15 km altitude their intensity declines as primary cosmic rays become less abundant and the generated neutrons are attenuated by the atmospheric air. At the earth surface, the intensity of secondary cosmic-ray neutrons heavily depends on their attenuation within the atmosphere, i.e. the amount of air the neutrons and their precursors pass through. Local atmospheric pressure measurements present an effective means to account for the varying neutron attenuation potential of the atmospheric air column above the neutron sensor. Pressure variations possess the second largest impact on the above-ground epithermal neutron intensity. Thus, using epithermal neutrons to infer environmental hydrogen content requires precise knowledge on how to correct for atmospheric pressure changes.</span></p><p><span>We conducted several short-term field experiments in saturated environments and at different altitudes, i.e. different pressure states to observe the neutron intensity pressure relation over a wide range of pressure values. Moreover, we used long-term measurements above glaciers in order to monitor the local dependence of neutron intensities and pressure in a pressure range typically found in Cosmic-Ray Neutron Sensing. The results are presented along with a broad Monte Carlo simulation campaign using MCNP 6. In these simulations, primary cosmic rays are released above the earth atmosphere at different cut-off rigidities capturing the whole evolution of cosmic-ray neutrons from generation to attenuation and annihilation. The simulated and experimentally derived pressure relation of cosmic-ray neutrons is compared to those of similar studies and assessed in the light of an appropriate atmospheric pressure correction for Cosmic-Ray Neutron Sensing.</span></p>


2008 ◽  
Vol 4 (S257) ◽  
pp. 471-473
Author(s):  
M. Buchvarova ◽  
P. Velinov

AbstractOur model generalizes the differential D(E) and integral D(>E) spectra of cosmic rays (CR) during the 11-year solar cycle. The empirical model takes into account galactic (GCR) and anomalous cosmic rays (ACR) heliospheric modulation by four coefficients. The calculated integral spectra in the outer planets are on the basis of mean gradients: for GCR – 3%/AU and 7%/AU for anomalous protons. The obtained integral proton spectra are compared with experimental data, the CRÈME96 model for the Earth and theoretical results of 2D stochastic model. The proposed analytical model gives practical possibility for investigation of experimental data from measurements of galactic cosmic rays and their anomalous component.


2017 ◽  
Vol 13 (S335) ◽  
pp. 69-74
Author(s):  
A. Dal Lago ◽  
C. R. Braga ◽  
R. R. S. de Mendonca ◽  
M. Rockenbach ◽  
E. Echer ◽  
...  

AbstractThe Global Muon Detector Network (GMDN) is composed by four ground cosmic ray detectors distributed around the Earth: Nagoya (Japan), Hobart (Australia), Sao Martinho da Serra (Brazil) and Kuwait city (Kuwait). The network has operated since March 2006. It has been upgraded a few times, increasing its detection area. Each detector is sensitive to muons produced by the interactions of ~50 GeV Galactic Cosmic Rays (GCR) with the Earth′s atmosphere. At these energies, GCR are known to be affected by interplanetary disturbances in the vicinity of the earth. Of special interest are the interplanetary counterparts of coronal mass ejections (ICMEs) and their driven shocks because they are known to be the main origins of geomagnetic storms. It has been observed that these ICMEs produce changes in the cosmic ray gradient, which can be measured by GMDN observations. In terms of applications for space weather, some attempts have been made to use GMDN for forecasting ICME arrival at the earth with lead times of the order of few hours. Scientific space weather studies benefit the most from the GMDN network. As an example, studies have been able to determine ICME orientation at the earth using cosmic ray gradient. Such determinations are of crucial importance for southward interplanetary magnetic field estimates, as well as ICME rotation.


2018 ◽  
Vol 62 ◽  
pp. 01006
Author(s):  
Yury Balabin ◽  
Boris Gvozdevsky ◽  
Aleksei Germanenko ◽  
Eugeny Maurchev

Started in 2009, the 24th solar cycle is going to end. In 2015, the solar activity was at its maximum, turning down. According to many indices, this cycle turned out to be abnormal. For instance, in the previous, the 23rd cycle, the index such as the number of solar spots was as high as 175, compared with that of the 24th cycle, not exceeding 100. According to the number of GLE-events (ground level enhancement of solar cosmic rays, observed on neutron monitors), the current cycle also differs greatly from the previous ones. In the 23rd cycle, the number of great GLE-events was as high as four, and that of small and moderate being five. In the 24th cycle, only two GLE-events were recorded: GLE 71 (17.05.2012) и GLE 72 (10.09.2017), with the last event being of small amplitude (5%). The presence of the neutron monitors network data enables calculation of the energy spectrum and other parameters of solar cosmic rays. The GLEevents are processed by special technique developed at PGI. It is aimed at solving the inverse problem: based on the data from the world neutron monitors network, to obtain the parameters of solar cosmic rays energy spectra. Like the previous ones, GLE-events 71 and 72 were processed by this technique. The energetic spectra obtained were compared with those in other events of the previous cycles


1994 ◽  
Vol 144 ◽  
pp. 107-109 ◽  
Author(s):  
S. Fischer ◽  
M. Vandas ◽  
E. V. Vashenyuk

AbstractAn investigation of mutual positions of footpoints of the Earth in the solar corona and the heliospheric current sheet (for both relativistic and nonrelativistic solar cosmic ray events) has not revealed any apparent dependence of observed SCR increases on the coronal distance of footpoints from the neutral line.


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 704-718 ◽  
Author(s):  
Paul E Damon ◽  
Songlin Cheng ◽  
Timothy W Linick

The coarse structure of the 14C spectrum consists of a secular trend curve that may be closely fit by a sinusoidal curve with period ca 11,000 yr and half amplitude ±51. This long-term trend is the result of changes in the earth's geomagnetic dipole moment. Consequently, it modulates solar components of the 14C spectrum but does not appear to modulate a component of the spectrum of ca 2300-yr period. The ca 2300-yr period is of uncertain origin but may be due to changes in climate because it also appears in the δ18O spectrum of ice cores. This component strongly modulates the well-known ca 200-yr period of the spectrum's fine structure. The hyperfine structure consists of two components that fluctuate with the 11-yr solar cycle. One component results from solar-wind modulation of the galactic cosmic rays and has a half-amplitude of ca ±1.5. The other component is the result of 14C production by solar cosmic rays that arrive more randomly but rise and fall with the 11-yr cycle and appear to dominate the fluctuation of the galactic cosmic-ray-produced component by a factor of two.


Sign in / Sign up

Export Citation Format

Share Document