scholarly journals Effect of surface tension on late-time growth of high-Reynolds-number Rayleigh-Taylor instability

2021 ◽  
Vol 70 (11) ◽  
pp. 1-10
Author(s):  
Huang Hao-Wei ◽  
◽  
Liang Hong ◽  
Xu Jiang-Rong
1995 ◽  
Vol 2 (1) ◽  
pp. 23-32
Author(s):  
Tsutomu adachi

In this paper, first, the principle, structures, operations, and performances of the cryogenic wind tunnel are described. By changing the pressure, temperature and velocity of gas a high Reynolds-number flow(5×104<Re<107)can be obtained. From the research results, a high Reynolds-number flow with comparatively low power, LN consumptions was attained. It was with Mach-number independent of each other, o show some examples of high Reynolds-number flow, the effects of surface roughness and grooves on the surface of a cylinder on the flow are measured using models with various values of roughness and size. A model test of an airship was also conducted. With the high Reynolds-number flow, the thickness of the boundary layer becomes thinner. Then the surface conditions of a body have great effect on the flow phenomena and on the drag of the body. Some attempts to reduce the drag of the body were shown.


1982 ◽  
Vol 119 ◽  
pp. 507-532 ◽  
Author(s):  
D. I. Pullin

We consider the behaviour of an interface between two immiscible inviscid incompressible fluids of different density moving under the action of gravity, inertial and interfacial tension forces. A vortex-sheet model of the exact nonlinear two-dimensional motion of this interface is formulated which includes expressions for an appropriate set of integral invariants. A numerical method for solving the vortex-sheet initial-value equations is developed, and is used to study the nonlinear growth of finite-amplitude normal modes for both Kelvin-Helmholtz and Rayleigh-Taylor instability. In the absence of an interfacial or surface-tension term in the integral-differential equation that describes the evolution of the circulation distribution on the vortex sheet, it is found that chaotic motion of, or the appearance of curvature singularities in, the discretized interface profiles prevent the simulations from proceeding to the late-time highly nonlinear phase of the motion. This unphysical behaviour is interpreted as a numerical manifestation of possible ill-posedness in the initial-value equations equivalent to the infinite growth rate of infinitesimal-wavelength disturbances in the linearized stability theory. The inclusion of an interfacial tension term in the circulation equation (which stabilizes linearized short-wavelength perturbations) was found to smooth profile irregularities but only for finite times. While coherent interfacial motion could then be followed well into the nonlinear regime for both the Kelvin-Helmholtz and Rayleigh-Taylor modes, locally irregular behaviour eventually reappeared and resisted subsequent attempts at numerical smoothing or suppression. Although several numerical and/or physical mechanisms are discussed that might produce irregular behaviour of the discretized interface in the presence of an interfacial-tension term, the basic cause of this instability remains unknown. The final description of the nonlinear interface motion thus awaits further research.


1995 ◽  
Vol 1 (3-4) ◽  
pp. 187-197 ◽  
Author(s):  
Tsutomu Adachi

In this paper, first, the principle, structures, operations, and performances of the cryogenic wind tunnel are described. By changing the pressure, temperature and velocity of gas a high Reynolds number flow(5×104<Re<107)can be obtained. From the research results, a high Reynolds number flow with comparatively low power,LN2consumptions was attained. It was with Mach number independent of each other.To show some examples of high Reynolds number flow, the effects of surface roughness and grooves on the surface of a cylinder on the flow are measured using models with various values of roughness and size. A model test of an airship was also conducted. With the high Reynolds number flow, the thickness of the boundary layer becomes thinner. Then the surface conditions of a body have great effect on the flow phenomena and on the drag of the body. Some attempts to reduce the drag of the body were shown.


AIChE Journal ◽  
1988 ◽  
Vol 34 (9) ◽  
pp. 1559-1562 ◽  
Author(s):  
G. C. Georgiou ◽  
T. C. Papanastasiou ◽  
J. O. Wilkes

Sign in / Sign up

Export Citation Format

Share Document