scholarly journals Acoustic cavitation characteristics of bubble in compressible liquid

2022 ◽  
Vol 71 (1) ◽  
pp. 1-8
Author(s):  
Zheng Yaxin ◽  
◽  
Naranmandula
2005 ◽  
Vol 17 (4) ◽  
pp. 343-371 ◽  
Author(s):  
S. Konovalova ◽  
I. S. Akhatov

Author(s):  
Nagaya Okada ◽  
Michihisa Shiiba ◽  
Fujimaru Kaise ◽  
Shinobu Yamauchi ◽  
Toshio Sato ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 134
Author(s):  
Ivan Smirnov ◽  
Natalia Mikhailova

Researchers are still working on the development of models that facilitate the accurate estimation of acoustic cavitation threshold. In this paper, we have analyzed the possibility of using the incubation time criterion to calculate the threshold of the onset of acoustic cavitation depending on the ultrasound frequency, hydrostatic pressure, and temperature of a liquid. This criterion has been successfully used by earlier studies to calculate the dynamic strength of solids and has recently been proposed in an adapted version for calculating the cavitation threshold. The analysis is carried out for various experimental data for water presented in the literature. Although the criterion assumes the use of macroparameters of a liquid, we also considered the possibility of taking into account the size of cavitation nuclei and its influence on the calculation result. We compared the results of cavitation threshold calculations done using the incubation time criterion of cavitation and the classical nucleation theory. Our results showed that the incubation time criterion more qualitatively models the results of experiments using only three parameters of the liquid. We then discussed a possible relationship between the parameters of the two approaches. The results of our study showed that the criterion under consideration has a good potential and can be conveniently used for applications where there are special requirements for ultrasound parameters, maximum negative pressure, and liquid temperature.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ammar Ali Abd ◽  
Samah Zaki Naji ◽  
Ching Thian Tye ◽  
Mohd Roslee Othman

Abstract Liquefied petroleum gas (LPG) plays a major role in worldwide energy consumption as a clean source of energy with low greenhouse gases emission. LPG transportation is exhibited through networks of pipelines, maritime, and tracks. LPG transmission using pipeline is environmentally friendly owing to the low greenhouse gases emission and low energy requirements. This work is a comprehensive evaluation of transportation petroleum gas in liquid state and compressible liquid state concerning LPG density, temperature and pressure, flow velocity, and pump energy consumption under the impact of different ambient temperatures. Inevitably, the pipeline surface exchanges heat between LPG and surrounding soil owing to the temperature difference and change in elevation. To prevent phase change, it is important to pay attention for several parameters such as ambient temperature, thermal conductivity of pipeline materials, soil type, and change in elevation for safe, reliable, and economic transportation. Transporting LPG at high pressure requests smaller pipeline size and consumes less energy for pumps due to its higher density. Also, LPG transportation under moderate or low pressure is more likely exposed to phase change, thus more thermal insulation and pressure boosting stations required to maintain the phase envelope. The models developed in this work aim to advance the existing knowledge and serve as a guide for efficient design by underling the importance of the mentioned parameters.


2000 ◽  
Vol 108 (3) ◽  
pp. 881
Author(s):  
J. R. Blake ◽  
Ljubinko Lou Kondic
Keyword(s):  

2006 ◽  
Vol 18 (3) ◽  
pp. 032108 ◽  
Author(s):  
Alexander A. Korobkin ◽  
Alessandro Iafrati

Sign in / Sign up

Export Citation Format

Share Document