On Uncertainty, Braiding and Jacobi Fields in Geometric Quantum Mechanics

Author(s):  
Alberto Benvegnù
2006 ◽  
Vol 18 (10) ◽  
pp. 1075-1102 ◽  
Author(s):  
ALBERTO BENVEGNÙ ◽  
MAURO SPERA

Acting within the framework of geometric quantum mechanics, an interpretation of quantum uncertainty is discussed in terms of Jacobi fields, and a connection with the theory of elliptic curves is outlined, via classical integrability of Schrödinger's dynamics and the cross-ratio interpretation of quantum transition probabilities. Furthermore, a thoroughly geometrical construction of all special unitary representations of the 3-strand braid group on the quantum 1-qubit space is given, and the connection of one of them with elliptic curves admitting complex multiplication automorphisms — the physically relevant one corresponding to the anharmonic ratio — is shown. Also, contact is made with the Temperley–Lieb algebra theoretic constructions of Kauffman and Lomonaco, and it is shown that the standard trace relative to one of the above representations computes the Jones polynomial for particular values of the parameter, for knots arising as closures of 3-strand braids. Subsequently, a geometric entanglement criterion (in terms of Segre embeddings) is discussed, together with a projective geometrical portrait for quantum 2-gates. Finally, Aravind's idea of describing quantum states via knot theory is critically analyzed, and a geometrical picture — involving a blend of SU(2)-representation theory, classical projective geometry, binary trees and Brunnian and Hopf links — is set up in order to describe successive measurements made upon generalized GHZ states, close in spirit to the quantum knot picture again devised by Kauffman and Lomonaco.


2019 ◽  
Vol 2 (2) ◽  

Not only universe, but everything has general characters as eternal, infinite, cyclic and wave-particle duality. Everything from elementary particles to celestial bodies, from electromagnetic wave to gravity is in eternal motions, which dissects only to circle. Since everything is described only by trigonometry. Without trigonometry and mathematical circle, the science cannot indicate all the beauty of harmonic universe. Other method may be very good, but it is not perfect. Some part is very nice, another part is problematic. General Theory of Relativity holds that gravity is geometric. Quantum Mechanics describes all particles by wave function of trigonometry. In this paper using trigonometry, particularly mathematics circle, a possible version of the unification of partial theories, evolution history and structure of expanding universe, and the parallel universes are shown.


2004 ◽  
Vol 51 (2) ◽  
pp. 229-243 ◽  
Author(s):  
Alberto Benvegnù ◽  
Nicola Sansonetto ◽  
Mauro Spera

2021 ◽  
Vol 10 (9) ◽  
pp. 3241-3251
Author(s):  
H. Umair ◽  
H. Zainuddin ◽  
K.T. Chan ◽  
Sh.K. Said Husein

Geometric Quantum Mechanics is a formulation that demonstrates how quantum theory may be casted in the language of Hamiltonian phase-space dynamics. In this framework, the states are referring to points in complex projective Hilbert space, the observables are real valued functions on the space and the Hamiltonian flow is defined by Schr{\"o}dinger equation. Recently, the effort to cast uncertainty principle in terms of geometrical language appeared to become the subject of intense study in geometric quantum mechanics. One has shown that the stronger version of uncertainty relation i.e. the Robertson-Schr{\"o}dinger uncertainty relation can be expressed in terms of the symplectic form and Riemannian metric. In this paper, we investigate the dynamical behavior of the uncertainty relation for spin $\frac{1}{2}$ system based on this formulation. We show that the Robertson-Schr{\"o}dinger uncertainty principle is not invariant under Hamiltonian flow. This is due to the fact that during evolution process, unlike symplectic area, the Riemannian metric is not invariant under the flow.


Sign in / Sign up

Export Citation Format

Share Document