scholarly journals FRACTIONAL ORDER THEORY OF THERMAL STRESSES IN A TWO DIMENSIONAL TRANSVERSELY ISOTROPIC MAGNETO THERMOELASTIC MATERIAL

2020 ◽  
Vol 50 (3) ◽  
Author(s):  
PARVEEN LATA ◽  
IQBAL KAUR
2017 ◽  
Vol 13 (3) ◽  
pp. 409-423 ◽  
Author(s):  
Vijay Chawla ◽  
Sanjeev Ahuja ◽  
Varsha Rani

Purpose The purpose of this paper is to study the fundamental solution in transversely isotropic micropolar thermoelastic media. With this objective, the two-dimensional general solution in transversely isotropic thermoelastic media is derived. Design/methodology/approach On the basis of the general solution, the fundamental solution for a steady point heat source on the surface of a semi-infinite transversely isotropic micropolar thermoelastic material is constructed by six newly introduced harmonic functions. Findings The components of displacement, stress, temperature distribution and couple stress are expressed in terms of elementary functions. From the present investigation, a special case of interest is also deduced and compared with the previous results obtained. Practical implications Fundamental solutions can be used to construct many analytical solutions of practical problems when boundary conditions are imposed. They are essential in the boundary element method as well as the study of cracks, defects and inclusions. Originality/value Fundamental solutions for a steady point heat source acting on the surface of a micropolar thermoelastic material is obtained by seven newly introduced harmonic functions. From the present investigation, some special cases of interest are also deduced.


2020 ◽  
Vol 25 (3) ◽  
pp. 169-180
Author(s):  
S. Thakare ◽  
Y. Panke ◽  
K. Hadke

AbstractIn this article, a time fractional-order theory of thermoelasticity is applied to an isotropic homogeneous elliptical disk. The lower and upper surfaces of the disk are maintained at zero temperature, whereas the sectional heat supply is applied on the outer curved surface. Thermal deflection and associated thermal stresses are obtained in terms of Mathieu function of the first kind of order 2n. Numerical evaluation is carried out for the temperature distribution, Thermal deflection and thermal stresses and results of the resulting quantities are depicted graphically.


2020 ◽  
Vol 23 (2) ◽  
pp. 378-389
Author(s):  
Ferenc Izsák ◽  
Gábor Maros

AbstractFractional-order elliptic problems are investigated in case of inhomogeneous Dirichlet boundary data. The boundary integral form is proposed as a suitable mathematical model. The corresponding theory is completed by sharpening the mapping properties of the corresponding potential operators. The existence-uniqueness result is stated also for two-dimensional domains. Finally, a mild condition is provided to ensure the existence of the classical solution of the boundary integral equation.


Sign in / Sign up

Export Citation Format

Share Document