scholarly journals Active suppression of a leaf meristem orchestrates determinate leaf growth

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
John Paul Alvarez ◽  
Chihiro Furumizu ◽  
Idan Efroni ◽  
Yuval Eshed ◽  
John L Bowman

Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved.

2012 ◽  
Vol 56 (4) ◽  
pp. 601-606 ◽  
Author(s):  
W. Xin ◽  
Z. Liu ◽  
Y. Song ◽  
T. Hou ◽  
F. Xiang

Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2723-2735 ◽  
Author(s):  
P.B. Talbert ◽  
H.T. Adler ◽  
D.W. Parks ◽  
L. Comai

The form of seed plants is determined by the growth of a number of meristems including apical meristems, leaf meristems and cambium layers. We investigated five recessive mutant alleles of a gene REVOLUTA that is required to promote the growth of apical meristems and to limit cell division in leaves and stems of Arabidopsis thaliana. REVOLUTA maps to the bottom of the fifth chromosome. Apical meristems of both paraclades (axillary shoots) and flowers of revoluta mutants frequently fail to complete normal development and form incomplete or abortive structures. The primary shoot apical meristem sometimes also arrests development early. Leaves, stems and floral organs, in contrast, grow abnormally large. We show that in the leaf epidermis this extra growth is due to extra cell divisions in the leaf basal meristem. The extent of leaf growth is negatively correlated with the development of a paraclade in the leaf axil. The thickened stems contain extra cell layers, arranged in rings, indicating that they may result from a cambium-like meristem. These results suggest that the REVOLUTA gene has a role in regulating the relative growth of apical and non-apical meristems in Arabidopsis.


2020 ◽  
Vol 39 (4) ◽  
pp. 543-552 ◽  
Author(s):  
Wen Jie Zhang ◽  
Li Ming Zhai ◽  
Hai Xia Yu ◽  
Jing Peng ◽  
Shan Shan Wang ◽  
...  

Author(s):  
Ekaterina Klimova ◽  
Olga Voitsekhovskaja

Transfer of developmental regulators, such as miRNA and transcription factors, through plasmodesmata represents one of the key mechanisms regulating morphogenesis in angiosperms. This mechanism has been termed non-cell-autonomous regulation. At present it is not known whether this process is involved in the morphogenesis of plants belonging to the evolutionarily ancient taxa. Importantly, structure and symplastic organization of apical meristems in the representatives of such taxa significantly differ from those in flowering plants. The non-cell-autonomous transcription factors encoded by the KNOX genes which regulate functions of the shoot apical meristem may become a promising model to study this issue. Refs 102. Figs 3.


2012 ◽  
Vol 37 (12) ◽  
pp. 2251-2260
Author(s):  
Jing-Yu GUO ◽  
Zhi-Xiong CHEN ◽  
Bing-Yao YANG ◽  
Xin-Fen CHEN ◽  
Xiang-Dong LIU ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 3068
Author(s):  
Zaira M. López-Juárez ◽  
Laura Aguilar-Henonin ◽  
Plinio Guzmán

RNA-binding proteins (RBPs) are key elements involved in post-transcriptional regulation. Ataxin-2 (ATXN2) is an evolutionarily conserved RBP protein, whose function has been studied in several model organisms, from Saccharomyces cerevisiae to the Homo sapiens. ATXN2 interacts with poly(A) binding proteins (PABP) and binds to specific sequences at the 3′UTR of target mRNAs to stabilize them. CTC-Interacting Domain3 (CID3) and CID4 are two ATXN2 orthologs present in plant genomes whose function is unknown. In the present study, phenotypical and transcriptome profiling were used to examine the role of CID3 and CID4 in Arabidopsis thaliana. We found that they act redundantly to influence pathways throughout the life cycle. cid3cid4 double mutant showed a delay in flowering time and a reduced rosette size. Transcriptome profiling revealed that key factors that promote floral transition and floral meristem identity were downregulated in cid3cid4 whereas the flowering repressor FLOWERING LOCUS C (FLC) was upregulated. Expression of key factors in the photoperiodic regulation of flowering and circadian clock pathways, were also altered in cid3cid4, as well as the expression of several transcription factors and miRNAs encoding genes involved in leaf growth dynamics. These findings reveal that ATXN2 orthologs may have a role in developmental pathways throughout the life cycle of plants.


Sign in / Sign up

Export Citation Format

Share Document