scholarly journals Transformation of temporal sequences in the zebra finch auditory system

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yoonseob Lim ◽  
Ryan Lagoy ◽  
Barbara G Shinn-Cunningham ◽  
Timothy J Gardner

This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamorecipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11 ms to 40 ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or ‘spatial codes', and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds.

2016 ◽  
Author(s):  
Yoonseob Lim ◽  
Ryan Lagoy ◽  
Barbara G Shinn-Cunningham ◽  
Timothy J Gardner

1986 ◽  
Vol 7 (01) ◽  
pp. 65-84
Author(s):  
Susan Shore

1992 ◽  
Vol 336 (1278) ◽  
pp. 295-306 ◽  

The past 30 years has seen a remarkable development in our understanding of how the auditory system - particularly the peripheral system - processes complex sounds. Perhaps the most significant has been our understanding of the mechanisms underlying auditory frequency selectivity and their importance for normal and impaired auditory processing. Physiologically vulnerable cochlear filtering can account for many aspects of our normal and impaired psychophysical frequency selectivity with important consequences for the perception of complex sounds. For normal hearing, remarkable mechanisms in the organ of Corti, involving enhancement of mechanical tuning (in mammals probably by feedback of electro-mechanically generated energy from the hair cells), produce exquisite tuning, reflected in the tuning properties of cochlear nerve fibres. Recent comparisons of physiological (cochlear nerve) and psychophysical frequency selectivity in the same species indicate that the ear’s overall frequency selectivity can be accounted for by this cochlear filtering, at least in band width terms. Because this cochlear filtering is physiologically vulnerable, it deteriorates in deleterious conditions of the cochlea - hypoxia, disease, drugs, noise overexposure, mechanical disturbance - and is reflected in impaired psychophysical frequency selectivity. This is a fundamental feature of sensorineural hearing loss of cochlear origin, and is of diagnostic value. This cochlear filtering, particularly as reflected in the temporal patterns of cochlear fibres to complex sounds, is remarkably robust over a wide range of stimulus levels. Furthermore, cochlear filtering properties are a prime determinant of the ‘place’ and ‘time’ coding of frequency at the cochlear nerve level, both of which appear to be involved in pitch perception. The problem of how the place and time coding of complex sounds is effected over the ear’s remarkably wide dynamic range is briefly addressed. In the auditory brainstem, particularly the dorsal cochlear nucleus, are inhibitory mechanisms responsible for enhancing the spectral and temporal contrasts in complex sounds. These mechanisms are now being dissected neuropharmacologically. At the cortical level, mechanisms are evident that are capable of abstracting biologically relevant features of complex sounds. Fundamental studies of how the auditory system encodes and processes complex sounds are vital to promising recent applications in the diagnosis and rehabilitation of the hearing impaired.


2019 ◽  
Vol 30 (4) ◽  
pp. 2586-2599 ◽  
Author(s):  
Stitipragyan Bhumika ◽  
Mari Nakamura ◽  
Patricia Valerio ◽  
Magdalena Solyga ◽  
Henrik Lindén ◽  
...  

Abstract Neuronal circuits are shaped by experience during time windows of increased plasticity in postnatal development. In the auditory system, the critical period for the simplest sounds—pure frequency tones—is well defined. Critical periods for more complex sounds remain to be elucidated. We used in vivo electrophysiological recordings in the mouse auditory cortex to demonstrate that passive exposure to frequency modulated sweeps (FMS) from postnatal day 31 to 38 leads to long-term changes in the temporal representation of sweep directions. Immunohistochemical analysis revealed a decreased percentage of layer 4 parvalbumin-positive (PV+) cells during this critical period, paralleled with a transient increase in responses to FMS, but not to pure tones. Preventing the PV+ cell decrease with continuous white noise exposure delayed the critical period onset, suggesting a reduction in inhibition as a mechanism for this plasticity. Our findings shed new light on the dependence of plastic windows on stimulus complexity that persistently sculpt the functional organization of the auditory cortex.


2009 ◽  
Vol 102 (6) ◽  
pp. 3329-3339 ◽  
Author(s):  
Nima Mesgarani ◽  
Stephen V. David ◽  
Jonathan B. Fritz ◽  
Shihab A. Shamma

Population responses of cortical neurons encode considerable details about sensory stimuli, and the encoded information is likely to change with stimulus context and behavioral conditions. The details of encoding are difficult to discern across large sets of single neuron data because of the complexity of naturally occurring stimulus features and cortical receptive fields. To overcome this problem, we used the method of stimulus reconstruction to study how complex sounds are encoded in primary auditory cortex (AI). This method uses a linear spectro-temporal model to map neural population responses to an estimate of the stimulus spectrogram, thereby enabling a direct comparison between the original stimulus and its reconstruction. By assessing the fidelity of such reconstructions from responses to modulated noise stimuli, we estimated the range over which AI neurons can faithfully encode spectro-temporal features. For stimuli containing statistical regularities (typical of those found in complex natural sounds), we found that knowledge of these regularities substantially improves reconstruction accuracy over reconstructions that do not take advantage of this prior knowledge. Finally, contrasting stimulus reconstructions under different behavioral states showed a novel view of the rapid changes in spectro-temporal response properties induced by attentional and motivational state.


Author(s):  
Israel Nelken

Understanding the principles by which sensory systems represent natural stimuli is one of the holy grails of neuroscience. In the auditory system, the study of the coding of natural sounds has a particular prominence. Indeed, the relationships between neural responses to simple stimuli (usually pure tone bursts)—often used to characterize auditory neurons—and complex sounds (in particular natural sounds) may be complex. Many different classes of natural sounds have been used to study the auditory system. Sound families that researchers have used to good effect in this endeavor include human speech, species-specific vocalizations, an “acoustic biotope” selected in one way or another, and sets of artificial sounds that mimic important features of natural sounds. Peripheral and brainstem representations of natural sounds are relatively well understood. The properties of the peripheral auditory system play a dominant role, and further processing occurs mostly within the frequency channels determined by these properties. At the level of the inferior colliculus, the highest brainstem station, representational complexity increases substantially due to the convergence of multiple processing streams. Undoubtedly, the most explored part of the auditory system, in term of responses to natural sounds, is the primary auditory cortex. In spite of over 50 years of research, there is still no commonly accepted view of the nature of the population code for natural sounds in the auditory cortex. Neurons in the auditory cortex are believed by some to be primarily linear spectro-temporal filters, by others to respond to conjunctions of important sound features, or even to encode perceptual concepts such as “auditory objects.” Whatever the exact mechanism is, many studies consistently report a substantial increase in the variability of the response patterns of cortical neurons to natural sounds. The generation of such variation may be the main contribution of auditory cortex to the coding of natural sounds.


2004 ◽  
Vol 76 (2) ◽  
pp. 253-257 ◽  
Author(s):  
Christine V. Portfors

Many animals use complex communication calls in social behaviors. In some species we know the features in the calls that elicit particular behaviors, but we do not understand how the auditory system encodes the calls. Nor do we understand the mechanisms underlying neural selectivity to calls. Our studies of the auditory midbrain of the Moustached Bat Pteronotus parnellii have revealed a neural mechanism important for generating selective responses to calls. Neurons that integrate information across different frequencies show selectivity to communication calls. "Combination sensitivity" may be a common mechanism for encoding complex sounds because it is also important for encoding echolocation signals.


Sign in / Sign up

Export Citation Format

Share Document