scholarly journals Author response: Functional properties of stellate cells in medial entorhinal cortex layer II

Author(s):  
David C Rowland ◽  
Horst A Obenhaus ◽  
Emilie R Skytøen ◽  
Qiangwei Zhang ◽  
Cliff G Kentros ◽  
...  
2020 ◽  
Author(s):  
Hugh Pastoll ◽  
Derek L Garden ◽  
Ioannis Papastathopoulos ◽  
Gülşen Sürmeli ◽  
Matthew F Nolan

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Andrew S Alexander ◽  
Michael E Hasselmo

The relationship between grid cells and two types of neurons found in the medial entorhinal cortex has been clarified.


2010 ◽  
Vol 104 (1) ◽  
pp. 258-270 ◽  
Author(s):  
James G. Heys ◽  
Lisa M. Giocomo ◽  
Michael E. Hasselmo

In vitro whole cell patch-clamp recordings of stellate cells in layer II of medial entorhinal cortex show a subthreshold membrane potential resonance in response to a sinusoidal current injection of varying frequency. Physiological recordings from awake behaving animals show that neurons in layer II medial entorhinal cortex, termed “grid cells,” fire in a spatially selective manner such that each cell's multiple firing fields form a hexagonal grid. Both the spatial periodicity of the grid fields and the resonance frequency change systematically in neurons along the dorsal to ventral axis of medial entorhinal cortex. Previous work has also shown that grid field spacing and acetylcholine levels change as a function of the novelty to a particular environment. Using in vitro whole cell patch-clamp recordings, our study shows that both resonance frequency and resonance strength vary as a function of cholinergic modulation. Furthermore, our data suggest that these changes in resonance properties are mediated through modulation of h-current and m-current.


Sign in / Sign up

Export Citation Format

Share Document