scholarly journals Decision letter: The visual speech head start improves perception and reduces superior temporal cortex responses to auditory speech

2019 ◽  
Author(s):  
Bradford Mahon
2019 ◽  
Author(s):  
Patrick J Karas ◽  
John F Magnotti ◽  
Brian A Metzger ◽  
Lin L Zhu ◽  
Kristen B Smith ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Patrick J Karas ◽  
John F Magnotti ◽  
Brian A Metzger ◽  
Lin L Zhu ◽  
Kristen B Smith ◽  
...  

Visual information about speech content from the talker’s mouth is often available before auditory information from the talker's voice. Here we examined perceptual and neural responses to words with and without this visual head start. For both types of words, perception was enhanced by viewing the talker's face, but the enhancement was significantly greater for words with a head start. Neural responses were measured from electrodes implanted over auditory association cortex in the posterior superior temporal gyrus (pSTG) of epileptic patients. The presence of visual speech suppressed responses to auditory speech, more so for words with a visual head start. We suggest that the head start inhibits representations of incompatible auditory phonemes, increasing perceptual accuracy and decreasing total neural responses. Together with previous work showing visual cortex modulation (Ozker et al., 2018b) these results from pSTG demonstrate that multisensory interactions are a powerful modulator of activity throughout the speech perception network.


2020 ◽  
Author(s):  
Johannes Rennig ◽  
Michael S Beauchamp

AbstractRegions of the human posterior superior temporal gyrus and sulcus (pSTG/S) respond to the visual mouth movements that constitute visual speech and the auditory vocalizations that constitute auditory speech. We hypothesized that these multisensory responses in pSTG/S underlie the observation that comprehension of noisy auditory speech is improved when it is accompanied by visual speech. To test this idea, we presented audiovisual sentences that contained either a clear auditory component or a noisy auditory component while measuring brain activity using BOLD fMRI. Participants reported the intelligibility of the speech on each trial with a button press. Perceptually, adding visual speech to noisy auditory sentences rendered them much more intelligible. Post-hoc trial sorting was used to examine brain activations during noisy sentences that were more or less intelligible, focusing on multisensory speech regions in the pSTG/S identified with an independent visual speech localizer. Univariate analysis showed that less intelligible noisy audiovisual sentences evoked a weaker BOLD response, while more intelligible sentences evoked a stronger BOLD response that was indistinguishable from clear sentences. To better understand these differences, we conducted a multivariate representational similarity analysis. The pattern of response for intelligible noisy audiovisual sentences was more similar to the pattern for clear sentences, while the response pattern for unintelligible noisy sentences was less similar. These results show that for both univariate and multivariate analyses, successful integration of visual and noisy auditory speech normalizes responses in pSTG/S, providing evidence that multisensory subregions of pSTG/S are responsible for the perceptual benefit of visual speech.Significance StatementEnabling social interactions, including the production and perception of speech, is a key function of the human brain. Speech perception is a complex computational problem that the brain solves using both visual information from the talker’s facial movements and auditory information from the talker’s voice. Visual speech information is particularly important under noisy listening conditions when auditory speech is difficult or impossible to understand alone Regions of the human cortex in posterior superior temporal lobe respond to the visual mouth movements that constitute visual speech and the auditory vocalizations that constitute auditory speech. We show that the pattern of activity in cortex reflects the successful multisensory integration of auditory and visual speech information in the service of perception.


2017 ◽  
Vol 114 (38) ◽  
pp. 10256-10261 ◽  
Author(s):  
Carly A. Anderson ◽  
Ian M. Wiggins ◽  
Pádraig T. Kitterick ◽  
Douglas E. H. Hartley

It has been suggested that visual language is maladaptive for hearing restoration with a cochlear implant (CI) due to cross-modal recruitment of auditory brain regions. Rehabilitative guidelines therefore discourage the use of visual language. However, neuroscientific understanding of cross-modal plasticity following cochlear implantation has been restricted due to incompatibility between established neuroimaging techniques and the surgically implanted electronic and magnetic components of the CI. As a solution to this problem, here we used functional near-infrared spectroscopy (fNIRS), a noninvasive optical neuroimaging method that is fully compatible with a CI and safe for repeated testing. The aim of this study was to examine cross-modal activation of auditory brain regions by visual speech from before to after implantation and its relation to CI success. Using fNIRS, we examined activation of superior temporal cortex to visual speech in the same profoundly deaf adults both before and 6 mo after implantation. Patients’ ability to understand auditory speech with their CI was also measured following 6 mo of CI use. Contrary to existing theory, the results demonstrate that increased cross-modal activation of auditory brain regions by visual speech from before to after implantation is associated with better speech understanding with a CI. Furthermore, activation of auditory cortex by visual and auditory speech developed in synchrony after implantation. Together these findings suggest that cross-modal plasticity by visual speech does not exert previously assumed maladaptive effects on CI success, but instead provides adaptive benefits to the restoration of hearing after implantation through an audiovisual mechanism.


2007 ◽  
Vol 18 (1) ◽  
pp. 230-242 ◽  
Author(s):  
Stephen M. Wilson ◽  
Istvan Molnar-Szakacs ◽  
Marco Iacoboni

NeuroImage ◽  
1996 ◽  
Vol 3 (3) ◽  
pp. S230
Author(s):  
R.D. Lane ◽  
E.M. Reiman ◽  
G.L. Ahern ◽  
G.E. Schwartz ◽  
R.J. Davidson ◽  
...  

2003 ◽  
Vol 60 (1) ◽  
pp. 75
Author(s):  
J.F. Smiley ◽  
A.J. Dwork ◽  
N. Davceva ◽  
B. Mancevski ◽  
A. Duma ◽  
...  

2020 ◽  
Author(s):  
Jonathan E Peelle ◽  
Brent Spehar ◽  
Michael S Jones ◽  
Sarah McConkey ◽  
Joel Myerson ◽  
...  

In everyday conversation, we usually process the talker's face as well as the sound of their voice. Access to visual speech information is particularly useful when the auditory signal is degraded. Here we used fMRI to monitor brain activity while adults (n = 60) were presented with visual-only, auditory-only, and audiovisual words. As expected, audiovisual speech perception recruited both auditory and visual cortex, with a trend towards increased recruitment of premotor cortex in more difficult conditions (for example, in substantial background noise). We then investigated neural connectivity using psychophysiological interaction (PPI) analysis with seed regions in both primary auditory cortex and primary visual cortex. Connectivity between auditory and visual cortices was stronger in audiovisual conditions than in unimodal conditions, including a wide network of regions in posterior temporal cortex and prefrontal cortex. Taken together, our results suggest a prominent role for cross-region synchronization in understanding both visual-only and audiovisual speech.


Sign in / Sign up

Export Citation Format

Share Document