scholarly journals Decision letter: Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing

2019 ◽  
Author(s):  
Jonas Demeulemeester ◽  
Daniel Rico
2020 ◽  
Author(s):  
Timour Baslan ◽  
Jude Kendall ◽  
Konstantin Volyanskyy ◽  
Katherine McNamara ◽  
Hilary Cox ◽  
...  

2016 ◽  
Author(s):  
Sarah A. Vitak ◽  
Kristof A. Torkenczy ◽  
Jimi L. Rosenkrantz ◽  
Andrew J. Fields ◽  
Lena Christiansen ◽  
...  

AbstractSingle cell genome sequencing has proven to be a valuable tool for the detection of somatic variation, particularly in the context of tumor evolution and neuronal heterogeneity. Current technologies suffer from high per-cell library construction costs which restrict the number of cells that can be assessed, thus imposing limitations on the ability to quantitatively measure genomic heterogeneity within a tissue. Here, we present Single cell Combinatorial Indexed Sequencing (SCI-seq) as a means of simultaneously generating thousands of low-pass single cell libraries for the purpose of somatic copy number variant detection. In total, we constructed libraries for 16,698 single cells from a combination of cultured cell lines, frontal cortex tissue from Macaca mulatta, and two human adenocarcinomas. This novel technology provides the opportunity for low-cost, deep characterization of somatic copy number variation in single cells, providing a foundational knowledge across both healthy and diseased tissues.


2014 ◽  
Author(s):  
Yong Wang ◽  
Nicholas Navin ◽  
Jill Waters ◽  
Marco Leung ◽  
Anna Unruh ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Timour Baslan ◽  
Jude Kendall ◽  
Konstantin Volyanskyy ◽  
Katherine McNamara ◽  
Hilary Cox ◽  
...  

Copy number alterations (CNAs) play an important role in molding the genomes of breast cancers and have been shown to be clinically useful for prognostic and therapeutic purposes. However, our knowledge of intra-tumoral genetic heterogeneity of this important class of somatic alterations is limited. Here, using single-cell sequencing, we comprehensively map out the facets of copy number alteration heterogeneity in a cohort of breast cancer tumors. Ou/var/www/html/elife/12-05-2020/backup/r analyses reveal: genetic heterogeneity of non-tumor cells (i.e. stroma) within the tumor mass; the extent to which copy number heterogeneity impacts breast cancer genomes and the importance of both the genomic location and dosage of sub-clonal events; the pervasive nature of genetic heterogeneity of chromosomal amplifications; and the association of copy number heterogeneity with clinical and biological parameters such as polyploidy and estrogen receptor negative status. Our data highlight the power of single-cell genomics in dissecting, in its many forms, intra-tumoral genetic heterogeneity of CNAs, the magnitude with which CNA heterogeneity affects the genomes of breast cancers, and the potential importance of CNA heterogeneity in phenomena such as therapeutic resistance and disease relapse.


Author(s):  
S. Bhattacharya ◽  
J. Lillis ◽  
C. Baker ◽  
M. Guo ◽  
J.R. Myers ◽  
...  

Cell Reports ◽  
2014 ◽  
Vol 8 (5) ◽  
pp. 1280-1289 ◽  
Author(s):  
Xuyu Cai ◽  
Gilad D. Evrony ◽  
Hillel S. Lehmann ◽  
Princess C. Elhosary ◽  
Bhaven K. Mehta ◽  
...  

2021 ◽  
Author(s):  
Gabriel H. Negreira ◽  
Pieter Monsieurs ◽  
Hideo Imamura ◽  
Ilse Maes ◽  
Nada Kuk ◽  
...  

Leishmania, a unicellular eukaryotic parasite, is a unique model for aneuploidy and cellular heterogeneity, along with their potential role in adaptation to environmental stresses. Somy variation within clonal populations was previously explored in a small subset of chromosomes using fluorescence hybridization methods. This phenomenon, termed mosaic aneuploidy (MA) might have important evolutionary and functional implications, but remains under-explored due to technological limitations. Here, we applied and validated a high throughput single-cell genome sequencing method to study for the first time the extent and dynamics of whole karyotype heterogeneity in two Leishmania clonal populations representing different stages of MA evolution in vitro. We found that drastic changes in karyotypes quickly emerge in a population stemming from an almost euploid founder cell. This possibly involves polyploidization/hybridization at an early stage of population expansion, followed by assorted ploidy reduction. During further stages of expansion, MA increases by moderate and gradual karyotypic alterations. MA usually affected a defined subset of chromosomes, of which some display enrichment in snoRNA genes which could represent an adaptative benefit to the amplification of these chromosomes. Our data provide the first complete characterization of MA in Leishmania and pave the way for further functional studies.


Sign in / Sign up

Export Citation Format

Share Document