scholarly journals Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Timour Baslan ◽  
Jude Kendall ◽  
Konstantin Volyanskyy ◽  
Katherine McNamara ◽  
Hilary Cox ◽  
...  

Copy number alterations (CNAs) play an important role in molding the genomes of breast cancers and have been shown to be clinically useful for prognostic and therapeutic purposes. However, our knowledge of intra-tumoral genetic heterogeneity of this important class of somatic alterations is limited. Here, using single-cell sequencing, we comprehensively map out the facets of copy number alteration heterogeneity in a cohort of breast cancer tumors. Ou/var/www/html/elife/12-05-2020/backup/r analyses reveal: genetic heterogeneity of non-tumor cells (i.e. stroma) within the tumor mass; the extent to which copy number heterogeneity impacts breast cancer genomes and the importance of both the genomic location and dosage of sub-clonal events; the pervasive nature of genetic heterogeneity of chromosomal amplifications; and the association of copy number heterogeneity with clinical and biological parameters such as polyploidy and estrogen receptor negative status. Our data highlight the power of single-cell genomics in dissecting, in its many forms, intra-tumoral genetic heterogeneity of CNAs, the magnitude with which CNA heterogeneity affects the genomes of breast cancers, and the potential importance of CNA heterogeneity in phenomena such as therapeutic resistance and disease relapse.

2020 ◽  
Author(s):  
Timour Baslan ◽  
Jude Kendall ◽  
Konstantin Volyanskyy ◽  
Katherine McNamara ◽  
Hilary Cox ◽  
...  

2017 ◽  
Vol 4 (9) ◽  
pp. 171060 ◽  
Author(s):  
Mamoru Kato ◽  
Daniel A. Vasco ◽  
Ryuichi Sugino ◽  
Daichi Narushima ◽  
Alexander Krasnitz

Single-cell sequencing is a promising technology that can address cancer cell evolution by identifying genetic alterations in individual cells. In a recent study, genome-wide DNA copy numbers of single cells were accurately quantified by single-cell sequencing in breast cancers. Phylogenetic-tree analysis revealed genetically distinct populations, each consisting of homogeneous cells. Bioinformatics methods based on population genetics should be further developed to quantitatively analyse the single-cell sequencing data. We developed a bioinformatics framework that was combined with molecular-evolution theories to analyse copy-number losses. This analysis revealed that most deletions in the breast cancers at the single-cell level were generated by simple stochastic processes. A non-standard type of coalescent theory, the multiple-merger coalescent model, aided by approximate Bayesian computation fit well with the data, allowing us to estimate the population-genetic parameters in addition to false-positive and false-negative rates. The estimated parameters suggest that the cancer cells underwent sweepstake evolution, where only one or very few parental cells produced a descendent cell population. We conclude that breast cancer cells successively substitute in a tumour mass, and the high reproduction of only a portion of cancer cells may confer high adaptability to this cancer.


2021 ◽  
Author(s):  
Marc J Williams ◽  
Tyler Funnell ◽  
Ciara O'Flanagan ◽  
Andrew McPherson ◽  
Sohrab Salehi ◽  
...  

Cancer genomes exhibit extensive chromosomal copy number changes and structural variation, yet how allele specific alterations drive cancer genome evolution remains unclear. Here, through application of a new computational approach we report allele specific copy number alterations in 11,097 single cell whole genomes from genetically engineered mammary epithelial cells and 21,852 cells from high grade serous ovarian and triple negative breast cancers. Resolving single cell copy number profiles to individual alleles uncovered genomic background distributions of gains, losses and loss of heterozygosity, yielding evidence of positive selection of specific chromosomal alterations. In addition specific genomic loci in maternal and paternal alleles were commonly found to be altered in parallel with convergent phenotypic transcriptional effects. Finally we show that haplotype specific alterations trace the cyclical etiology of high level amplifications and reveal clonal haplotype decomposition of complex structures. Together, our results illuminate how allele and haplotype specific alterations, here determined across thousands of single cell cancer genomes, impact the etiology and evolution of structural variations in human tumours.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fang Wang ◽  
Qihan Wang ◽  
Vakul Mohanty ◽  
Shaoheng Liang ◽  
Jinzhuang Dou ◽  
...  

AbstractWe present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm that infers the evolution history of a cell population based on single-cell copy number (SCCN) profiles, and a statistical routine named lineage speciation analysis (LSA), whichty facilitates discovery of fitness-associated alterations and genes from SCCN lineage trees. MEDALT appears more accurate than phylogenetics approaches in reconstructing copy number lineage. From data from 20 triple-negative breast cancer patients, our approaches effectively prioritize genes that are essential for breast cancer cell fitness and predict patient survival, including those implicating convergent evolution.The source code of our study is available at https://github.com/KChen-lab/MEDALT.


2020 ◽  
pp. 464-471 ◽  
Author(s):  
Lubomir Chorbadjiev ◽  
Jude Kendall ◽  
Joan Alexander ◽  
Viacheslav Zhygulin ◽  
Junyan Song ◽  
...  

PURPOSE Copy-number profiling of multiple individual cells from sparse sequencing may be used to reveal a detailed picture of genomic heterogeneity and clonal organization in a tissue biopsy specimen. We sought to provide a comprehensive computational pipeline for single-cell genomics, to facilitate adoption of this molecular technology for basic and translational research. MATERIALS AND METHODS The pipeline comprises software tools programmed in Python and in R and depends on Bowtie, HISAT2, Matplotlib, and Qt. It is installed and used with Anaconda. RESULTS Here we describe a complete pipeline for sparse single-cell genomic data, encompassing all steps of single-nucleus DNA copy-number profiling, from raw sequence processing to clonal structure analysis and visualization. For the latter, a specialized graphical user interface termed the single-cell genome viewer (SCGV) is provided. With applications to cancer diagnostics in mind, the SCGV allows for zooming and linkage to the University of California at Santa Cruz Genome Browser from each of the multiple integrated views of single-cell copy-number profiles. The latter can be organized by clonal substructure or by any of the associated metadata such as anatomic location and histologic characterization. CONCLUSION The pipeline is available as open-source software for Linux and OS X. Its modular structure, extensive documentation, and ease of deployment using Anaconda facilitate its adoption by researchers and practitioners of single-cell genomics. With open-source availability and Massachusetts Institute of Technology licensing, it provides a basis for additional development by the cancer bioinformatics community.


2020 ◽  
Vol 5 (44) ◽  
pp. eaay6017 ◽  
Author(s):  
Hamad Alshetaiwi ◽  
Nicholas Pervolarakis ◽  
Laura Lynn McIntyre ◽  
Dennis Ma ◽  
Quy Nguyen ◽  
...  

Myeloid-derived suppressor cells (MDSCs) are innate immune cells that acquire the capacity to suppress adaptive immune responses during cancer. It remains elusive how MDSCs differ from their normal myeloid counterparts, which limits our ability to specifically detect and therapeutically target MDSCs during cancer. Here, we sought to determine the molecular features of breast cancer–associated MDSCs using the widely studied mouse model based on the mouse mammary tumor virus (MMTV) promoter–driven expression of the polyomavirus middle T oncoprotein (MMTV-PyMT). To identify MDSCs in an unbiased manner, we used single-cell RNA sequencing to compare MDSC-containing splenic myeloid cells from breast tumor–bearing mice with wild-type controls. Our computational analysis of 14,646 single-cell transcriptomes revealed that MDSCs emerge through an aberrant neutrophil maturation trajectory in the spleen that confers them an immunosuppressive cell state. We establish the MDSC-specific gene signature and identify CD84 as a surface marker for improved detection and enrichment of MDSCs in breast cancers.


Cell Reports ◽  
2014 ◽  
Vol 8 (5) ◽  
pp. 1280-1289 ◽  
Author(s):  
Xuyu Cai ◽  
Gilad D. Evrony ◽  
Hillel S. Lehmann ◽  
Princess C. Elhosary ◽  
Bhaven K. Mehta ◽  
...  

2021 ◽  
Author(s):  
Nicholas Navin ◽  
Jake Leighton ◽  
Min Hu ◽  
Emi Sei ◽  
Funda Meric-Bernstam

Single cell DNA sequencing (scDNA-seq) methods are powerful tools for profiling mutations in cancer cells, however most genomic regions characterized in single cells are non-informative. To overcome this issue, we developed a Multi-Patient-Targeted (MPT) scDNA-seq sequencing method. MPT involves first performing bulk exome sequencing across a cohort of cancer patients to identify somatic mutations, which are then pooled together to develop a single custom targeted panel for high-throughput scDNA-seq using a microfluidics platform. We applied MPT to profile 330 mutations across 23,500 cells from 5 TNBC patients, which showed that 3 tumors were monoclonal and 2 tumors were polyclonal. From this data, we reconstructed mutational lineages and identified early mutational and copy number events, including early TP53 mutations that occurred in all five patients. Collectively, our data suggests that MPT can overcome technical obstacles for studying tumor evolution using scDNA-seq by profiling information-rich mutation sites.


2018 ◽  
Author(s):  
Daniel L. Roden ◽  
Laura A. Baker ◽  
Benjamin Elsworth ◽  
Chia-Ling Chan ◽  
Kate Harvey ◽  
...  

AbstractBreast cancer has long been classified into a number of molecular subtypes that predict prognosis and therefore influence clinical treatment decisions. Cellular heterogeneity is also evident in breast cancers and plays a key role in the development, evolution and metastatic progression of many cancers. How clinical heterogeneity relates to cellular heterogeneity is poorly understood, so we approached this question using single cell gene expression analysis of well established in vitro and in vivo models of disease.To explore the cellular heterogeneity in breast cancer we first examined a panel of genes that define the PAM50 classifier of molecular subtype. Five breast cancer cell line models (MCF7, BT474, SKBR3, MDA-MB-231, and MDA-MB-468) were selected as representatives of the intrinsic molecular subtypes (luminal A and B, basal-like, and Her2-enriched). Single cell multiplex RT-PCR was used to isolate and quantify the gene expression of single cells from each of these models, and the PAM50 classifier applied. Using this approach, we identified heterogeneity of intrinsic subtypes at single-cell level, indicating that cells with different subtypes exist within a cell line. Using the Chromium 10X system, this study was extended into thousands of cells from the MCF7 cell-line and an ER+ patient derived xenograft (PDX) model and again identified significant intra-tumour heterogeneity of molecular subtype.Estrogen Receptor (ER) is an important driver and therapeutic target in many breast cancers. It is heterogeneously expressed in a proportion of clinical cases but the significance of this to ER activity is unknown. Significant heterogeneity in the transcriptional activation of ER regulated genes was observed within tumours. This differential activation of the ER cistrome aligned with expression of two known transcriptional co-regulatory factors of ER (FOXA1 and PGR).To examine the degree of heterogeneity for other important phenotypic traits, we used an unsupervised clustering approach to identify cellular sub-populations with diverse cancer associated transcriptional properties, such as: proliferation; hypoxia; and treatment resistance. In particular, we show that we can identify two distinct sub-populations of cells that may have denovo resistance to endocrine therapies in a treatment naïve PDX model of ER+ breast cancer. One of these consists of cells with a non-proliferative transcriptional phenotype that is enriched for transcriptional properties of ERBB2 tumours. The other is heavily enriched for components of the primary cilia. Gene regulatory networks were used to identify transcription factor regulons that are active in each cell, leading us to identify potential transcriptional drivers (such as E2F7, MYB and RFX3) of the cilia associated endocrine resistant cells. This rare subpopulation of cells also has a highly heterogenous mix of intrinsic subtypes highlighting a potential role of intra-tumour subtype heterogeneity in endocrine resistance and metastatic potential.Overall, These results suggest a high degree of cellular heterogeneity within breast cancer models, even cell lines, that can be functionally dissected into sub-populations of cells with transcriptional phenotypes of potential clinical relevance.


Sign in / Sign up

Export Citation Format

Share Document