genomic location
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 84)

H-INDEX

25
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Clarice K.Y. Hong ◽  
Barak A. Cohen

A classical model of gene regulation is that enhancers provide specificity whereas core promoters provide a modular site for the assembly of the basal transcriptional machinery. However, examples of core promoter specificity have led to an alternate hypothesis in which specificity is achieved by core promoters with different sequence motifs that respond differently to genomic environments containing different enhancers and chromatin landscapes. To distinguish between these models, we measured the activities of hundreds of diverse core promoters in four different genomic locations and, in a complementary experiment, six different core promoters at thousands of locations across the genome. Although genomic locations had large effects on expression, the intrinsic activities of different classes of promoters were preserved across genomic locations, suggesting that core promoters are modular regulatory elements whose activities are independently scaled up or down by different genomic locations. This scaling of promoter activities is nonlinear and depends on the genomic location and the strength of the core promoter. Our results support the classical model of regulation in which diverse core promoter motifs set the intrinsic strengths of core promoters, which are then amplified or dampened by the activities of their genomic environments.


2021 ◽  
Author(s):  
Steven J Burgess

This protocol is used for genotyping Arabidopsis seedlings to test for the presence of a transfer DNA (T-DNA) insertion. By using two primer sets it is possible to determine whether a seedling is homozygous, heterozygous or azygous for an insertion in the predicted genomic location. To identify lines with T-DNA insertions in a gene of interest, you need the Arabidopsis Genome Identifier (AGI) number corresponding to the genomic locus (e.g. RCS1A = AT1G67090), then visit the Salk Institute T-DNA Express site to find all the mapped insertions at your locus of interest. Genotyping primers have been pre-designed for each T-DNA line, these can be retrieved from the Salk Institute T-DNA primer site, and ordered at any supplier of DNA oligonucleotides before starting the protocol. In the US T-DNA lines can be purchased from the Arabidopsis Biological Resource Center (ABRC) and in the UK and EU from the European Arabidopsis Stock Center (NASC). Recommended reading http://signal.salk.edu/tdnaprimers.2.html Setting up the PCR reaction Genotyping is performed with the Phire Direct PCR Mix, this includes the polymerase, nucleotides and salts necessary for amplification. We use the “dilution protocol” which involves taking a small leaf disk and homogenizing it in dilution buffer using a gel tip (see manufacturer’s instructions for more details.)


2021 ◽  
Author(s):  
Lynn Doran ◽  
Steven J Burgess

This protocol is used for genotyping Arabidopsis seedlings to test for the presence of a transfer DNA (T-DNA) insertion. By using two primer sets it is possible to determine whether a seedling is homozygous, heterozygous or azygous for an insertion in the predicted genomic location. To identify lines with T-DNA insertions in a gene of interest, you need the Arabidopsis Genome Identifier (AGI) number corresponding to the genomic locus (e.g. RCS1A = AT1G67090), then visit the Salk Institute T-DNA Express site to find all the mapped insertions at your locus of interest. Genotyping primers have been pre-designed for each T-DNA line, these can be retrieved from the Salk Institute T-DNA primer site, and ordered at any supplier of DNA oligonucleotides before starting the protocol. In the US T-DNA lines can be purchased from the Arabidopsis Biological Resource Center (ABRC) and in the UK and EU from the European Arabidopsis Stock Center (NASC). Recommended reading http://signal.salk.edu/tdnaprimers.2.html Setting up the PCR reaction Genotyping is performed with the Phire Plant Direct PCR Mix, this includes the polymerase, nucleotides and salts necessary for amplification. We use the “dilution protocol” which involves taking a small leaf disk and homogenizing it in dilution buffer using a gel tip (see manufacturer’s instructions for more details.)


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259846
Author(s):  
Yasuhiro Fujiwara ◽  
Yuji Tanno ◽  
Hiroki Sugishita ◽  
Yusuke Kishi ◽  
Yoshinori Makino ◽  
...  

Epigenome research has employed various methods to identify the genomic location of proteins of interest, such as transcription factors and histone modifications. A recently established method called CUT&Tag uses a Protein-A Tn5 transposase fusion protein, which cuts the genome and inserts adapter sequences nearby the target protein. Throughout most of the CUT&Tag procedure, cells are held on concanavalin A (con A)-conjugated magnetic beads. Proper holding of cells would be decisive for the accessibility of Tn5 to the chromatin, and efficacy of the procedure of washing cells. However, BioMag®Plus ConA magnetic beads, used in the original CUT&Tag protocol, often exhibit poor suspendability and severe aggregation. Here, we compared the BioMag beads and Dynabeads® magnetic particles of which conjugation of con A was done by our hands, and examined the performance of these magnetic beads in CUT&Tag. Among tested, one of the Dynabeads, MyOne-T1, kept excessive suspendability in a buffer even after overnight incubation. Furthermore, the MyOne-T1 beads notably improved the sensitivity in CUT&Tag assay for H3K4me3. In conclusion, the arrangement and the selection of MyOne-T1 refine the suspendability of beads, which improves the association of chromatin with Tn5, which enhances the sensitivity in CUT&Tag assay.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Livia O. Loureiro ◽  
Jennifer L. Howe ◽  
Miriam S. Reuter ◽  
Alana Iaboni ◽  
Kristina Calli ◽  
...  

AbstractAutism Spectrum Disorder (ASD) is genetically complex with ~100 copy number variants and genes involved. To try to establish more definitive genotype and phenotype correlations in ASD, we searched genome sequence data, and the literature, for recurrent predicted damaging sequence-level variants affecting single genes. We identified 18 individuals from 16 unrelated families carrying a heterozygous guanine duplication (c.3679dup; p.Ala1227Glyfs*69) occurring within a string of 8 guanines (genomic location [hg38]g.50,721,512dup) affecting SHANK3, a prototypical ASD gene (0.08% of ASD-affected individuals carried the predicted p.Ala1227Glyfs*69 frameshift variant). Most probands carried de novo mutations, but five individuals in three families inherited it through somatic mosaicism. We scrutinized the phenotype of p.Ala1227Glyfs*69 carriers, and while everyone (17/17) formally tested for ASD carried a diagnosis, there was the variable expression of core ASD features both within and between families. Defining such recurrent mutational mechanisms underlying an ASD outcome is important for genetic counseling and early intervention.


2021 ◽  
Author(s):  
Marion Sinclair‐Waters ◽  
Nikolai Piavchenko ◽  
Annukka Ruokolainen ◽  
Tutku Aykanat ◽  
Jaakko Erkinaro ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Krishna S Ghanta ◽  
Zexiang Chen ◽  
Aamir Mir ◽  
Gregoriy A Dokshin ◽  
Pranathi M Krishnamurthy ◽  
...  

Nuclease-directed genome editing is a powerful tool for investigating physiology and has great promise as a therapeutic approach to correct mutations that cause disease. In its most precise form, genome editing can use cellular homology-directed repair (HDR) pathways to insert information from an exogenously supplied DNA repair template (donor) directly into a targeted genomic location. Unfortunately, particularly for long insertions, toxicity and delivery considerations associated with repair template DNA can limit HDR efficacy. Here, we explore chemical modifications to both double-stranded and single-stranded DNA-repair templates. We describe 5′-terminal modifications, including in its simplest form the incorporation of triethylene glycol (TEG) moieties, that consistently increase the frequency of precision editing in the germlines of three animal models (Caenorhabditis elegans, zebrafish, mice) and in cultured human cells.


2021 ◽  
Author(s):  
Ricardo Piuco ◽  
Pedro A.F. Galante

Motivation: Found in several metazoan species, piwi-interacting RNAs (piRNAs) regulate the expression of a wide variety of transposable elements and genes associated with cellular development, differentiation, and growth. Despite their importance, piRNAs are not well known and are still underexplored. To facilitate piRNA research, a comprehensive and easy-to-use piRNA database is still needed. Results: Here, we present piRNAdb, an integrative and user-friendly database designed to encompass several aspects of piRNAs. We selected piRNAs from four reliable human RNA-sequencing datasets to start our database. After data processing, we displayed these sequences, their genomic location, clustering information, putative targets on known genes and transposable elements, as well as direct links to other databases. In this first release, piRNAdb catalogues 27,329 piRNAs, as well as 23,380 genes that are putative targets and 47,060 associated gene ontology terms, both of which are organized and linked to each respective piRNA. Finally, to improve information exchange and increase the confidence of sequences, a feedback system is provided to users of piRNAdb. Conclusion: The inclusion of new features to facilitate piRNA analyses, data visualization, and integration is the major pillar of piRNAdb. Our main goal was to make this database an easy interface between the data and the user. We believe that this web tool achieves this objective by providing a streamlined and well-organized data repository for piRNAs and that it will be extremely useful to those already studying piRNAs and to the broader community. Availability: piRNAdb is available freely and is compatible with smartphones and tablets: https://www.pirnadb.org/ .


2021 ◽  
Vol 49 (18) ◽  
pp. 10369-10381
Author(s):  
Zhaozhao Zhao ◽  
Qiushi Xu ◽  
Ran Wei ◽  
Leihuan Huang ◽  
Weixu Wang ◽  
...  

Abstract Somatic single nucleotide variants (SNVs) in cancer genome affect gene expression through various mechanisms depending on their genomic location. While somatic SNVs near canonical splice sites have been reported to cause abnormal splicing of cancer-related genes, whether these SNVs can affect gene expression through other mechanisms remains an open question. Here, we analyzed RNA sequencing and exome data from 4,998 cancer patients covering ten cancer types and identified 152 somatic SNVs near splice sites that were associated with abnormal intronic polyadenylation (IPA). IPA-associated somatic variants favored the localization near the donor splice sites compared to the acceptor splice sites. A proportion of SNV-associated IPA events overlapped with premature cleavage and polyadenylation events triggered by U1 small nuclear ribonucleoproteins (snRNP) inhibition. GC content, intron length and polyadenylation signal were three genomic features that differentiated between SNV-associated IPA and intron retention. Notably, IPA-associated SNVs were enriched in tumor suppressor genes (TSGs), including the well-known TSGs such as PTEN and CDH1 with recurrent SNV-associated IPA events. Minigene assay confirmed that SNVs from PTEN, CDH1, VEGFA, GRHL2, CUL3 and WWC2 could lead to IPA. This work reveals that IPA acts as a novel mechanism explaining the functional consequence of somatic SNVs in human cancer.


2021 ◽  
Author(s):  
Subit Barua ◽  
Elaine Pereira ◽  
Vaidehi Jobanputra ◽  
Kwame Anyane-Yeboa ◽  
Brynn Levy ◽  
...  

Abstract BackgroundConstitutional deletions/rearrangements involving chromosome 3q are uncommon and overlapping microdeletions of chromosome 3q26-3q28 have only been reported in eight individuals. The common phenotype observed in these individuals include severe intrauterine growth restriction and postnatal growth impairment, feeding difficulties, characteristic facial features, feet abnormalities and developmental delay. The most striking clinical features shared among all reported cases is severe prenatal and postnatal growth restriction and neurodevelopmental abnormalities. Case presentationWe identified two additional individuals with overlapping deletions and shared clinical features by high-resolution SNP oligonucleotide microarray, and refined the smallest region of overlap (SRO) to a 1.2 Mb genomic location in chromosome 3q27.1 by reviewing and comparing all published cases. We evaluated the SRO using ACMG/ClinGen current recommendations for classifying copy number variants (CNVs), and discussed the contribution of the genes deleted in the SRO to the abnormal phenotype observed in these individuals. ConclusionsThis study provides further evidence supporting the existence of a novel 3q26q28 microdeletion syndrome and suggests that haploinsufficiency of potential candidate genes, DVL3, AP2M1, and PARL in the SRO in 3q27.1 is responsible for the phenotype. It also demonstrates the clinical utility of the newly released ACMG/Clingen standards for CNV interpretation.


Sign in / Sign up

Export Citation Format

Share Document