scholarly journals Author response: Cell-specific exon methylation and CTCF binding in neurons regulate calcium ion channel splicing and function

2020 ◽  
Author(s):  
Eduardo Javier López Soto ◽  
Diane Lipscombe
Author(s):  
Mohammad Kashif ◽  
Partha P. Manna ◽  
Yusuf Akhter ◽  
Mohammed Alaidarous ◽  
Abdur Rub

Author(s):  
Ling-Ling Qian ◽  
Xiaojing Sun ◽  
Jingchun Yang ◽  
Xiao-Li Wang ◽  
Michael J. Ackerman ◽  
...  

2009 ◽  
Vol 181 (4S) ◽  
pp. 506-506
Author(s):  
Christian Gratzke ◽  
Philipp Weinhold ◽  
Oliver Reich ◽  
Christian G Stief ◽  
Karl-Erik Andersson ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masataka Nakano ◽  
Takuya Furuichi ◽  
Masahiro Sokabe ◽  
Hidetoshi Iida ◽  
Hitoshi Tatsumi

AbstractGravity is a critical environmental factor affecting the morphology and function of plants on Earth. Gravistimulation triggered by changes in the gravity vector induces an increase in the cytoplasmic free calcium ion concentration ([Ca2+]c) as an early process of gravity sensing; however, its role and molecular mechanism are still unclear. When seedlings of Arabidopsis thaliana expressing apoaequorin were rotated from the upright position to the upside-down position, a biphasic [Ca2+]c-increase composed of a fast-transient [Ca2+]c-increase followed by a slow [Ca2+]c-increase was observed. We find here a novel type [Ca2+]c-increase, designated a very slow [Ca2+]c-increase that is observed when the seedlings were rotated back to the upright position from the upside-down position. The very slow [Ca2+]c-increase was strongly attenuated in knockout seedlings defective in MCA1, a mechanosensitive Ca2+-permeable channel (MSCC), and was partially restored in MCA1-complemented seedlings. The mechanosensitive ion channel blocker, gadolinium, blocked the very slow [Ca2+]c-increase. This is the first report suggesting the possible involvement of MCA1 in an early event related to gravity sensing in Arabidopsis seedlings.


2020 ◽  
Author(s):  
Huascar Pedro Ortuste Quiroga ◽  
Shingo Yokoyama ◽  
Massimo Ganassi ◽  
Kodai Nakamura ◽  
Tomohiro Yamashita ◽  
...  

AbstractMechanical stimuli such as stretch and resistance training are essential to regulate growth and function of skeletal muscle. However, the molecular mechanisms involved in sensing mechanical stress remain unclear. Here, the purpose of this study was to investigate the role of the mechanosensitive ion channel Piezo1 during myogenic progression. Muscle satellite cell-derived myoblasts and myotubes were modified with stretch, siRNA knockdown and agonist-induced activation of Piezo1. Direct manipulation of Piezo1 modulates terminal myogenic progression. Piezo1 knockdown suppressed myoblast fusion during myotube formation and maturation. This was accompanied by downregulation of the fusogenic protein Myomaker. Piezo1 knockdown also lowered Ca2+ influx in response to stretch. Conversely Piezo1 activation stimulated fusion and increased Ca2+ influx in response to stretch. These evidences indicate that Piezo1 is essential for myotube formation and maturation, which may have implications for msucular dystrophy prevention through its role as a mechanosensitive Ca2+ channel.


2020 ◽  
Vol 28 (18) ◽  
pp. 115655
Author(s):  
Fernanda C. Cardoso ◽  
Marie-Adeline Marliac ◽  
Chloe Geoffroy ◽  
Matthieu Schmit ◽  
Anjie Bispat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document