scholarly journals LTD at amygdalocortical synapses as a novel mechanism for hedonic learning

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Melissa S Haley ◽  
Stephen Bruno ◽  
Alfredo Fontanini ◽  
Arianna Maffei

A novel, pleasant taste stimulus becomes aversive if associated with gastric malaise, a form of learning known as conditioned taste aversion (CTA). CTA is common to vertebrates and invertebrates and is an important survival response: eating the wrong food may be deadly. CTA depends on the gustatory portion of the insular cortex (GC) and the basolateral nucleus of the amygdala (BLA) however, its synaptic underpinnings are unknown. Here we report that CTA was associated with decreased expression of immediate early genes in rat GC of both sexes, and with reduced amplitude of BLA-GC synaptic responses, pointing to long-term depression (LTD) as a mechanism for learning. Indeed, association of a novel tastant with induction of LTD at the BLA-GC input in vivo was sufficient to change the hedonic value of a taste stimulus. Our results demonstrate a direct role for amygdalocortical LTD in taste aversion learning.

2019 ◽  
Author(s):  
Melissa S. Haley ◽  
Stephen Bruno ◽  
Alfredo Fontanini ◽  
Arianna Maffei

AbstractA novel, pleasant taste stimulus becomes aversive if associated with gastric malaise, a form of learning known as conditioned taste aversion (CTA). CTA is common to vertebrates and invertebrates and is an important survival response: eating the wrong food may be deadly. CTA depends on the gustatory portion of the insular cortex (GC) and the basolateral nucleus of the amygdala (BLA) however, its synaptic underpinnings are unknown. Here we report that CTA was associated with decreased expression of immediate early genes in rat GC of both sexes, and with reduced amplitude of BLA-GC synaptic responses, pointing to long term depression (LTD) as a mechanism for learning. Indeed, association of a novel tastant with induction of LTD at the BLA-GC input in vivo was sufficient to change the hedonic value of a taste stimulus. Our results demonstrate a direct role for amygdalocortical LTD in taste aversion learning.


2021 ◽  
Author(s):  
Elvi Gil Lievana ◽  
Gerardo Ramirez Mejia ◽  
Oscar Urrego Morales ◽  
Jorge Luis Islas ◽  
Ranier Gutierrez ◽  
...  

Taste memory involves storing information through plasticity changes in the neural network of taste, including the insular cortex (IC) and ventral tegmental area (VTA), a critical provider of dopamine. Although a VTA-IC dopaminergic pathway has been demonstrated, its role to consolidate taste recognition memory remains poorly understood. We found that photostimulation of dopaminergic neurons in the VTA or VTA-IC dopaminergic terminals of TH-Cre mice increases the salience to facilitate consolidation of a novel taste stimulus regardless of its hedonic value, without altering their taste palatability. Importantly, the inhibition of the D1-like receptor into the IC impairs the salience to facilitate consolidation of an aversive taste recognition memory. Finally, our results showed that VTA photostimulation improves the salience to facilitate consolidation of a conditioned taste aversion memory through the D1-like receptor into the IC. It is concluded that the dopamine activity from the VTA into IC is required to increase the salience to facilitate consolidation of a taste recognition memory. Notably, the D1-like receptor activity into the IC is required to consolidate both innate and learned aversive taste memories but not appetitive taste memory.


2011 ◽  
Vol 95 (4) ◽  
pp. 519-526 ◽  
Author(s):  
Luis F. Rodríguez-Durán ◽  
Diana V. Castillo ◽  
Minerva Moguel-González ◽  
Martha L. Escobar

1997 ◽  
Vol 759 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Marı́a Isabel Miranda ◽  
Ana Marı́a López-Colomé ◽  
Federico Bermúdez-Rattoni

1998 ◽  
Vol 779 (1-2) ◽  
pp. 314-319 ◽  
Author(s):  
Martha L Escobar ◽  
Vincent Chao ◽  
Federico Bermúdez-Rattoni

Sign in / Sign up

Export Citation Format

Share Document