scholarly journals Distinct population code for movement kinematics and changes of ongoing movements in human subthalamic nucleus

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dennis London ◽  
Arash Fazl ◽  
Kalman Katlowitz ◽  
Marisol Soula ◽  
Michael Pourfar ◽  
...  

The subthalamic nucleus (STN) is theorized to globally suppress movement through connections with downstream basal ganglia structures. Current theories are supported by increased STN activity when subjects withhold an uninitiated action plan, but a critical test of these theories requires studying STN responses when an ongoing action is replaced with an alternative. We perform this test in subjects with Parkinson's disease using an extended reaching task where the movement trajectory changes mid-action. We show that STN activity decreases during action switches, contrary to prevalent theories. Further, beta oscillations in the STN local field potential, which are associated with movement inhibition, do not show increased power or spiking entrainment during switches. We report an inhomogeneous population neural code in STN, with one sub-population encoding movement kinematics and direction and another encoding unexpected action switches. We suggest an elaborate neural code in STN that contributes to planning actions and changing the plans.

2020 ◽  
Author(s):  
Dennis London ◽  
Arash Fazl ◽  
Kalman Katlowitz ◽  
Marisol Soula ◽  
Michael H Pourfar ◽  
...  

AbstractThe subthalamic nucleus (STN) is theorized to globally suppress movement through connections with downstream basal ganglia structures. Current theories are supported by increased STN activity when subjects withhold an uninitiated action plan, but a critical test of these theories requires studying STN responses when an ongoing action is replaced with an alternative. Here, we perform this test using an extended reaching task with instructions to switch movement trajectory mid-action. We show that STN activity decreases during action switches, contrary to prevalent theories. Further, beta oscillations in the local field potential in STN, which are associated with movement inhibition do not show increased power or entraining of neuronal firing during switches. We report an inhomogeneous population neural code in STN, with one sub-population encoding movement kinematics and direction and another encoding unexpected action switches. We suggest an elaborate neural code in STN that contributes to planning actions and changing the plans.


2019 ◽  
Vol 15 (1) ◽  
pp. 85-92
Author(s):  
Takeshi Kodama ◽  
Yuji Nakamura ◽  
Sonomi Nakajima ◽  
Kenichi Kamoshita ◽  
Yasuhito Sengoku

2005 ◽  
Vol 194 (1) ◽  
pp. 212-220 ◽  
Author(s):  
Andrea A. Kühn ◽  
Thomas Trottenberg ◽  
Anatol Kivi ◽  
Andreas Kupsch ◽  
Gerd-Helge Schneider ◽  
...  

2017 ◽  
Vol 128 (10) ◽  
pp. e375-e376
Author(s):  
M. Heldmann ◽  
L. Paracka ◽  
M. Liebrand ◽  
D. Rasche ◽  
V. Tronnier ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Saiyi Li ◽  
Pubudu N. Pathirana ◽  
Mary P. Galea ◽  
Goetz Ottmann ◽  
Fary Khan

Effective telerehabilitation technologies enable patients with certain physiological disabilities to engage in rehabilitative exercises for performing Activities of Daily Living (ADLs). Therefore, training and assessment scenarios for the performance of ADLs are vital for the promotion for telerehabilitation. In this paper we investigate quantitatively and automatically assessing patient’s kinematic ability to perform functional upper extremity reaching tasks. The shape of the movement trajectory and the instantaneous acceleration of kinematically crucial body parts, such as wrists, are used to compute the approximate entropy of the motions to represent stability (smoothness) in addition to the duration of the activity. Computer simulations were conducted to illustrate the consistency, sensitivity and robustness of the proposed method. A preliminary experiment with kinematic data captured from healthy subjects mimicking a reaching task with dyskinesia showed a high degree of correlation (Cohen’s kappa 0.85 withp<0.05) between a human observer and the proposed automatic classification tool in terms of assigning the datasets to various levels to represent the subjects’ kinematic abilities to perform reaching tasks. This study supported the use of Microsoft Kinect to quantitatively evaluate the ability of individuals with involuntary movements to perform an upper extremity reaching task.


2006 ◽  
Vol 96 (6) ◽  
pp. 3248-3256 ◽  
Author(s):  
Moran Weinberger ◽  
Neil Mahant ◽  
William D. Hutchison ◽  
Andres M. Lozano ◽  
Elena Moro ◽  
...  

Recent studies suggest that beta (15–30 Hz) oscillatory activity in the subthalamic nucleus (STN) is dramatically increased in Parkinson's disease (PD) and may interfere with movement execution. Dopaminergic medications decrease beta activity and deep brain stimulation (DBS) in the STN may alleviate PD symptoms by disrupting this oscillatory activity. Depth recordings from PD patients have demonstrated beta oscillatory neuronal and local field potential (LFP) activity in STN, although its prevalence and relationship to neuronal activity are unclear. In this study, we recorded both LFP and neuronal spike activity from the STN in 14 PD patients during functional neurosurgery. Of 200 single- and multiunit recordings 56 showed significant oscillatory activity at about 26 Hz and 89% of these were coherent with the simultaneously recorded LFP. The incidence of neuronal beta oscillatory activity was significantly higher in the dorsal STN ( P = 0.01) and corresponds to the significantly increased LFP beta power recorded in the same region. Of particular interest was a significant positive correlation between the incidence of oscillatory neurons and the patient's benefit from dopaminergic medications, but not with baseline motor deficits off medication. These findings suggest that the degree of neuronal beta oscillatory activity is related to the magnitude of the response of the basal ganglia to dopaminergic agents rather than directly to the motor symptoms of PD. The study also suggests that LFP beta oscillatory activity is generated largely within the dorsal portion of the STN and can produce synchronous oscillatory activity of the local neuronal population.


Author(s):  
Jianbo Gao ◽  
Yi Zheng ◽  
Jing Hu

Understanding the causal relation between neural inputs and movements is very important for the success of brain machine interfaces (BMIs). In this study, we perform systematic statistical and information theoretical analysis of neuronal firings of 104 neurons, and employ three different types of fractal and multifractal techniques (including Fano factor analysis, multifractal detrended fluctuation analysis (MF-DFA), and wavelet multifractal analysis) to examine whether neuronal firings related to movements may have long-range temporal correlations. We find that MF-DFA and wavelet multifractal analysis (but not Fano factor analysis) clearly indicate that when neuronal firings are not well correlated with movement trajectory, they do not have or only have weak temporal correlations. When neuronal firings are well correlated with movements, they are characterized by very strong temporal correlations, up to a time scale comparable to the average time between two successive reaching tasks. This suggests that neurons well correlated with hand trajectory experienced a “re-setting” effect at the start of each reaching task. We further discuss the significance of the coalition of those important neurons in executing cortical control of prostheses.


Sign in / Sign up

Export Citation Format

Share Document