scholarly journals Loss of Tsc1 in cerebellar Purkinje cells induces transcriptional and translation changes in FMRP target transcripts

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jasbir Singh Dalal ◽  
Kellen Diamond Winden ◽  
Catherine Lourdes Salussolia ◽  
Maria Sundberg ◽  
Achint Singh ◽  
...  

Tuberous sclerosis complex (TSC) is a genetic disorder that is associated with multiple neurological manifestations. Previously, we demonstrated that Tsc1 loss in cerebellar Purkinje cells (PCs) can cause altered social behavior in mice. Here, we performed detailed transcriptional and translational analyses of Tsc1-deficient PCs to understand the molecular alterations in these cells. We found that target transcripts of the Fragile X Mental Retardation Protein (FMRP) are reduced in mutant PCs with evidence of increased degradation. Surprisingly, we observed unchanged ribosomal binding for many of these genes using translating ribosome affinity purification. Finally, we found that multiple FMRP targets, including SHANK2, were reduced, suggesting that compensatory increases in ribosomal binding efficiency may be unable to overcome reduced transcript levels. These data further implicate dysfunction of FMRP and its targets in TSC and suggest that treatments aimed at restoring the function of these pathways may be beneficial.

2021 ◽  
Author(s):  
Jasbir Dalal ◽  
Kellen D. Winden ◽  
Catherine L. Salussolia ◽  
Maria Sundberg ◽  
Achint Singh ◽  
...  

AbstractTuberous sclerosis complex (TSC) is a genetic disorder that is associated with multiple neurological manifestations. Previously, we demonstrated that Tsc1 loss in cerebellar Purkinje cells (PCs) can cause altered social behavior in mice. Here, we performed detailed transcriptional and translational analyses of Tsc1-deficient PCs to understand the molecular alterations in these cells. We found that target transcripts of the Fragile X Mental Retardation Protein (FMRP) are reduced in mutant PCs with evidence of increased degradation. Surprisingly, we observed unchanged ribosomal binding for many of these genes using Translating Ribosome Affinity Purification (TRAP). Finally, we found that the FMRP target, SHANK2, was reduced in PC synapses, suggesting that compensatory increases in ribosomal binding efficiency may be unable to overcome reduced transcript levels. These data further implicate dysfunction of FMRP and its targets in TSC and suggest that treatments aimed at restoring the function of these pathways may be beneficial.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Phuong Nguyen ◽  
Jong Bok Seo ◽  
Hyo-Min Ahn ◽  
Young Ho Koh

We investigated unknownin vivofunctions of Torsin by usingDrosophilaas a model. Downregulation ofDrosophilaTorsin (DTor) by DTor-specific inhibitory double-stranded RNA (RNAi) induced abnormal locomotor behavior and increased susceptibility to H2O2. In addition, altered expression of DTor significantly increased the numbers of synaptic boutons. One important biochemical consequence of DTor-RNAi expression in fly brains was upregulation of alcohol dehydrogenase (ADH). Altered expression of ADH has also been reported inDrosophilaFragile-X mental retardation protein (DFMRP) mutant flies. Interestingly, expression of DFMRP was altered in DTor mutant flies, and DTor and DFMRP were present in the same protein complexes. In addition, DTor and DFMRP immunoreactivities were partially colocalized in several cellular organelles in larval muscles. Furthermore, there were no significant differences between synaptic morphologies ofdfmrpnull mutants anddfmrpmutants expressing DTor-RNAi. Taken together, our evidences suggested that DTor and DFMRP might be present in the same signaling pathway regulating synaptic plasticity. In addition, we also found that human Torsin1A and human FMRP were present in the same protein complexes, suggesting that this phenomenon is evolutionarily conserved.


2015 ◽  
Vol 43 (17) ◽  
pp. 8540-8550 ◽  
Author(s):  
Thomas Maurin ◽  
Mireille Melko ◽  
Sabiha Abekhoukh ◽  
Olfa Khalfallah ◽  
Laetitia Davidovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document