scholarly journals Dip-Hump Temperature Dependence of Specific Heat and Effects of Pairing Fluctuations in the Weak-Coupling Side of a P-Wave Interacting Fermi Gas

2016 ◽  
Vol 85 (12) ◽  
pp. 123301 ◽  
Author(s):  
Daisuke Inotani ◽  
Pieter van Wyk ◽  
Yoji Ohashi
1999 ◽  
Vol 13 (28) ◽  
pp. 3357-3367 ◽  
Author(s):  
A. REBEI ◽  
W. N. G. HITCHON

At finite temperature, a Fermi gas can have states that simultaneously hold a particle and a hole with a finite probability. This gives rise to a new set of diagrams that are absent at zero temperature. The so called "anomalous" diagram is just one of the new diagrams. We have already studied the contribution of these new diagrams to the thermodynamic potential (Phys. Lett.A224, 127 (1996)). Here we continue that work and calculate their effect on the specific heat. We will also calculate the finite temperature contribution of the ring diagrams. We conclude that the ln T behavior of the specific heat due to exchange gets canceled by the new contribution of the new diagrams, and that screening is not essential to resolve this anomaly.


1936 ◽  
Vol 32 (1) ◽  
pp. 108-111 ◽  
Author(s):  
N. F. Mott

The purpose of this note is to calculate the specific heat and paramagnetic susceptibility of an electron gas obeying the Fermi-Dirac statistics for all temperatures, including those temperatures for which the gas is partially degenerate. The results are applicable to the electrons in a metal, whether free or moving in a periodic field, provided only that the number of electronic states per gram atom with energy between E and E + dE can be expressed in the formas for free electrons.


Author(s):  
I. N. Ganiev ◽  
S. E. Otajonov ◽  
N. F. Ibrohimov ◽  
M. Mahmudov

In the heat «cooling» investigated the temperature dependence of the specific heat capacity and thermodynamic functions doped strontium alloy AK1М2 in the range 298,15—900 K. Mathematical models are obtained that describe the change in these properties of alloys in the temperature range 298.15—900 K, as well as on the concentration of the doping component. It was found that with increasing temperature, specific heat capacity, enthalpy and entropy alloys increase, and the concentration up to 0.5 wt.% of the alloying element decreases. Gibbs energy values have an inverse relationship, i.e., temperature — decreases the content of alloying component — is up to 0.5 wt.% growing.


Author(s):  
Robert H. Swendsen

The main application of Fermi–Dirac Statistics is to calculate the properties of electrons. This chapter explains how the properties of fermions account for the behavior of metals. The Fermi energy is introduced and shown to correspond to a very high temperature, so that most properties can be obtained from low-temperature expansions. Both discrete and continuous densities of states are discussed. The Sommerfeld expansion is derived explicitly. The low-temperature specific heat and compressibility are derived. The most important fermions are electrons, and understanding the properties of electrons is central to understanding the properties of all materials. In this chapter we will study the ideal Fermi gas, which turns out to explain many of the properties of electrons in metals.


2020 ◽  
Vol 2020 (1) ◽  
pp. 17-24 ◽  
Author(s):  
I. N. Ganiev ◽  
A. G. Safarov ◽  
F. R. Odinaev ◽  
U. Sh. Yakubov ◽  
K. Kabutov

Sign in / Sign up

Export Citation Format

Share Document