Effect of ion-beam bombardment on microstructural and magnetic properties of Ni80Fe20/α-Fe2O3thin films

2014 ◽  
Vol 53 (6S) ◽  
pp. 06JB03 ◽  
Author(s):  
Chao Zheng ◽  
Tien-Chi Lan ◽  
Chin Shueh ◽  
Ryan D. Desautels ◽  
Johan van Lierop ◽  
...  
Keyword(s):  
2015 ◽  
Vol 117 (17) ◽  
pp. 17B909 ◽  
Author(s):  
S. L. A. Mello ◽  
M. M. Sant'Anna ◽  
C. F. S. Codeço ◽  
S. N. Dong ◽  
T. Yoo ◽  
...  

AIP Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 056433 ◽  
Author(s):  
Ryunosuke Soma ◽  
Yuichi Saitoh ◽  
Masako Sakamaki ◽  
Kenta Amemiya ◽  
Akihiro Iwase ◽  
...  

2016 ◽  
Vol 152 ◽  
pp. 41-47 ◽  
Author(s):  
X. Li ◽  
K.-W. Lin ◽  
H.-T. Liang ◽  
P.-L. Liu ◽  
W.-C. Lo ◽  
...  

1994 ◽  
Vol 133 (1-3) ◽  
pp. 493-496 ◽  
Author(s):  
P. Pain ◽  
J.P. Eymery ◽  
M. Cahoreau ◽  
M.F. Denanot ◽  
J.F. Dinhut

2001 ◽  
Vol 674 ◽  
Author(s):  
Jason D. Wright ◽  
Kannan M. Krishnan

ABSTRACTThe modification of conventional longitudinal recording media by ion-beam irradiation is of both scientific and technological interest. In particular, patterning by irradiation through a stencil mask at the 50 nm length scale may fulfill the promise of a commercially viable patterned media architecture. In this context, the magnetic properties and microstructural evolution of high-coercivity longitudinal thin film media were investigated after ion-beam irradiation. TRIM simulations were used to calculate the depth profiles and damage distributions as a function of energy and dose for carbon, nitrogen, and chromium ions and three different media (C, Cr, no capping layer). Corresponding implantations were carried out and hysteresis curves were measured using a vibrating sample magnetometer (VSM). Using chromium ion implantation at 20 keV, both remanence and coercivity were reduced to zero, i.e., rendering the ferromagnetic thin film paramagnetic, at doses as low as 1×1016 cm−2. For C+ implantation at 20 keV, remanence and coercivity were also reduced to varying extent up to doses of 5×1016 cm−2 after which further irradiation had no effect. Slight decreases in remanence and coercivity were observed for 20 keV N2+ irradiation. XRD measurements indicate that the hexagonal cobalt alloy phase remains intact after irradiation. The physical and magnetic domain structures at the surface were assessed by atomic force and magnetic force microscopy. Combined with the development of a suitable stencil mask, such chromium ion implantation can be used to develop a viable patterned media with nanoscale dimensions, consisting of locally defined ferromagnetic and paramagnetic regions. This work is in progress.


Sign in / Sign up

Export Citation Format

Share Document