scholarly journals Development of Motion based Training Contents: "3D Space Exploration" Case Study

2013 ◽  
Vol 13 (5) ◽  
pp. 63-72 ◽  
Author(s):  
C.J. Lim ◽  
Seung Goo Park ◽  
Yun Guen Jeong
Keyword(s):  
Author(s):  
Koki Ho ◽  
Hao Chen ◽  
Harrison Kim

This paper analyzes the value of staged deployment for complex infrastructure system and propose a concept of bootstrapping staged deployment. Staged deployment has been well known for its advantage of providing flexibility in an uncertain environment. In contrast, this paper demonstrates that the proposed bootstrapping staged deployment can even add values in a deterministic environment. The key idea of bootstrapping staged deployment is to have the previously deployed stages support the subsequent deployment. We develop an analytical model to demonstrate the effects of bootstrapping staged deployment with a case study in space exploration. Our analysis results show that with a well-coordinated deployment plan, staged deployment can overperform single-stage deployment even in a deterministic environment, and that there is an optimal number of stages in terms of lifecycle cost under certain conditions. Our method can find the analytical expression for the optimal number of stages and its deployment strategies. The general findings from the proposed concept and analytical method can advance our knowledge about systems staged deployment, and make operational planning of resource generation infrastructure more efficient.


Author(s):  
Pablo Bellocq ◽  
Inaki Garmendia ◽  
Jordane Legrand ◽  
Vishal Sethi

Direct Drive Open Rotors (DDORs) have the potential to significantly reduce fuel consumption and emissions relative to conventional turbofans. However, this engine architecture presents many design and operational challenges both at engine and aircraft level. At preliminary design stages, a broad design space exploration is required to identify potential optimum design regions and to understand the main trade offs of this novel engine architecture. These assessments may also aid the development process when compromises need to be performed as a consequence of design, operational or regulatory constraints. Design space exploration assessments are done with 0-D or 1-D models for computational purposes. These simplified 0-D and 1-D models have to capture the impact of the independent variation of the main design and control variables of the engine. Historically, it appears that for preliminary design studies of DDORs, Counter Rotating Turbines (CRTs) have been modelled as conventional turbines and therefore it was not possible to assess the impact of the variation of the number of stages (Nb) of the CRT and rotational speed of the propellers. Additionally, no preliminary design methodology for CRTs was found in the public domain. Part I of this two-part publication proposes a 1-D preliminary design methodology for DDOR CRTs which allows an independent definition of both parts of the CRT. A method for calculating the off-design performance of a known CRT design is also described. In Part II, a 0-D design point efficiency calculation for CRTs is proposed and verified with the 1-D methods. The 1-D and 0-D CRT models were used in an engine control and design space exploration case study of a DDOR with a 4.26m diameter an 10% clipped propeller for a 160 PAX aircraft. For this application: • the design and performance of a 20 stage CRT rotating at 860 rpm (both drums) obtained with the 1-D methods is presented. • differently from geared open rotors, negligible cruise fuel savings can be achieved by an advanced propeller control. • for rotational speeds between 750 and 880 rpm (relatively low speeds for reduced noise), 22 and 20 stages CRTs are required. • engine weight can be kept constant for different design rotational speeds by using the minimum required Nb. • for any target engine weight, TOC and cruise SFC are reduced by reducing the rotational speeds and increasing Nb (also favourable for reducing CRP noise). However additional CRT stages increase engine drag, mechanical complexity and cost.


Author(s):  
Laura Ziegler ◽  
Kemper Lewis

A unique set of cognitive and computational challenges arise in large-scale decision making, in relation to trade-off processing and design space exploration. While several multi-attribute decision making methods exist in the current design literature, many are insufficient or not fully explored for many-attribute decision problems of six or more attributes. To address this scaling in complexity, the methodology presented in this paper strategically elicits preferences over iterative attribute subsets while leveraging principles of the Hypothetical Equivalents and Inequivalents Method (HEIM). A case study demonstrates the effectiveness of the approach in the construction of a systematic representation of preferences and the convergence to a single ‘best’ alternative.


2012 ◽  
Vol 442 ◽  
pp. 104-108
Author(s):  
Xiao Lan Bai ◽  
Yu Zhang

Pipe routing is to design the routes for pipes in 3D space, meeting various constraints and engineering rules. This paper proposes the engineering rules-based orthogonal and variable-steps pipe routing algorithm. Firstly, the cylindrical coordinate system was adopted to describe the layout space and obstacles. In view of two endpoints of the pipe and obstacles in between, the local searching space was built. Then, the searching algorithm was given according to engineering rules, which was involved with the orthogonal searching directions and their order, the searching variable-steps. Moreover, the specific flow of this algorithm was described. The algorithm requires less memory space and has a fast search speed. The case study shows it is feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document