scholarly journals Nano-Dielectric Resonator Antenna Reflectarray/Transmittarray for Terahertz Applications

2015 ◽  
Vol 4 (1) ◽  
pp. 36 ◽  
Author(s):  
H. A. Malhat ◽  
N. A. Eltresy ◽  
S. H. Zainud-Deen ◽  
K. H. Awadalla

Nanoantennas have introduced wide bandwidth for fast data communications. The material properties of good conducting metals introduce plasmonic behavior at Terahertz frequencies. The material property of good conducting metals using Drude Lorentz model has been investigated. The radiation characteristics of nano-dielectric resonator antenna (NDRA) reflectarray at 633 nm have been investigated. A parametric study for the nano DRA unit cell dimensions and material has been introduced. A NDR with silver ground plane have been designed and analyzed. A nano-transmitarray unit-cell has been introduced for the analysis. A comparison between the radiation characteristics of 17×17 and 21×21 NDRA transmitarray has been given. A compromise between the nano-transmitarray size, maximum gain, and operating bandwidth is applied to Terahertz applications. The finite integral technique is used to carry a full wave analysis to design a NDRA reflectarray and a NDRA transmitarray.

2012 ◽  
Vol 1 (3) ◽  
pp. 71
Author(s):  
H. A. E. Malhat ◽  
S. Zainud-deen ◽  
N. El-Shalaby ◽  
K. Awadalla

Dielectric resonator antenna (DRA) mounted on cylindrical ground plane is investigated for handheld RFID reader applications at 5.8 GHz. The simplicity of the structure makes it practical in terms of cost, space, and ease of fabrication. The radiation characteristics of the antenna in free space and in the presence of a proposed compact reader device model and human hand are calculated. The antenna is circularly polarized and exhibits peak gain of 7.62 dB at 5.8 GHz with high front to back ratio of 15.5 dB. Using the same reader device model, a sequentially feeding 2×2 DRA array mounted on the same cylindrical ground plane is used for RFID reader antenna at 5.8 GHz. The array introduces high gain of 9.36 dB at 5.8 GHz with high front to back ratio of 10.48 dB. The 2×2 DRA array elements exhibit circular polarization over a frequency band of 1.1 GHz. The axial ratio is 1.1 dB at 5.8 GHz. The proposed reader model is simple and has a small size compared with that in the case of planar ground plane. The results are calculated using the finite element method (FEM) and compared with that calculated using the finite integral technique (FIT).


2019 ◽  
Vol 8 (3) ◽  
pp. 57-63
Author(s):  
A. Zitouni ◽  
N. Boukli-Hacene

In this article, a novel T-shaped compact dielectric resonator antenna for ultra-wideband (UWB) application is presented and studied. The proposed DRA structure consists of T-shaped dielectric resonator fed by stepped microstrip monopole printed antenna, partial ground plane and an inverted L-shaped stub. The inverted L-shaped stub and parasitic strip are utilized to improve impedance bandwidth. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. From the simulation results, it is found that the proposed antenna structure operates over a frequency range of 3.45 to more than 28 GHz with a fractional bandwidth over 156.12%, which covers UWB application, and having better gain and radiation characteristics.


Author(s):  
L. W. Labaw

Crystals of a human γGl immunoglobulin have the external morphology of diamond shaped prisms. X-ray studies have shown them to be monoclinic, space group C2, with 2 molecules per unit cell. The unit cell dimensions are a = 194.1, b = 91.7, c = 51.6Å, 8 = 102°. The relatively large molecular weight of 151,000 and these unit cell dimensions made this a promising crystal to study in the EM.Crystals similar to those used in the x-ray studies were fixed at 5°C for three weeks in a solution of mother liquor containing 5 x 10-5M sodium phosphate, pH 7.0, and 0.03% glutaraldehyde. They were postfixed with 1% osmium tetroxide for 15 min. and embedded in Maraglas the usual way. Sections were cut perpendicular to the three crystallographic axes. Such a section cut with its plane perpendicular to the z direction is shown in Fig. 1.This projection of the crystal in the z direction shows periodicities in at least four different directions but these are only seen clearly by sighting obliquely along the micrograph.


2007 ◽  
Vol 17 (1) ◽  
pp. 1-30
Author(s):  
S.H. Zainud-Deen ◽  
E. El-Deen ◽  
H.A. Sharshar ◽  
M. A. Binyamin

Clay Minerals ◽  
1990 ◽  
Vol 25 (4) ◽  
pp. 507-518 ◽  
Author(s):  
M. H. Ebinger ◽  
D. G. Schulze

AbstractMn-substituted iron oxides were synthesized at pH 4, 6, 8, and 10 from Fe-Mn systems with Mn mole fractions (Mn/(Mn + Fe)) of 0, 0·2, 0·4, 0·6, 0·8, and 1·0, and kept at 50°C for 40 days. The Mn mole fraction in goethite was <0·07 at pH 4 but increased to ∼0.47 at pH 6. Goethite and/or hematite formed in Fe and Fe + Mn syntheses at pH 4 and pH 6 at Mn mole fractions ≤0·8, and at Mn mole fractions ≤0·2 at pH 8 and pH 10. Hausmannite and jacobsite formed at pH 8 and pH 10 at Mn mole fractions ≥0·4. In the pure Mn syntheses, manganite (γ-MnOOH) formed at pH 4 and pH 6, whereas hausmannite (Mn3O4) formed at pH 8 and pH 10. As the Mn substitution increased, the unit-cell dimensions of goethite shifted toward those of groutite, and the mean crystallite dimensions of goethite decreased.


1980 ◽  
Vol 208 (1173) ◽  
pp. 409-414

Crystals found in the lumen of the intestine of Nematodirus battus have been studied by electron microscopy. Two of the unit cell dimensions are 16 nm x 23 nm. The possibility of an immunological significance for these crystals is considered.


1999 ◽  
Vol 55 (11) ◽  
pp. 1903-1905 ◽  
Author(s):  
John N. Lisgarten ◽  
James E. Pitts ◽  
Rex A. Palmer ◽  
Colin D. Reynolds ◽  
Minh Hoa Dao-Thi ◽  
...  

Crystals of Helix pomatia agglutinin (HPA) have been grown by the hanging-drop technique using polyethylene glycol as the precipitant at 293 K. Over a period of one to two weeks the crystals grew to maximum dimensions of 0.10 × 0.05 × 0.02 mm. The crystals belong to space group P6322, with unit-cell dimensions a = b = 63.3, c = 105.2 Å and Z = 12 identical monomers of Mr = 13 kDa, aggregating into two 78 kDa hexameric protein molecules per unit cell, each with symmetry 32 (D 3). The diffraction pattern extends to 3.6 Å at 293 K.


Sign in / Sign up

Export Citation Format

Share Document