crystallographic axes
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 26)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Vol 92 (3) ◽  
pp. 337
Author(s):  
Е.И. Кухарь ◽  
С.В. Крючков

Floquet spectrum of charge carriers in a 2D crystal with initially displaced Dirac points has been derived. The phase and amplitude dependences of the energy gap induced by elliptically polarized and bichromatic high-frequency fields has been investigated. In contrast to graphene the linearly polarized electric field has been shown to be able to transform the initially semi-metallic state of Dirac crystal into the Floquet-insulator state. The conditions for such a transition are indicated, one of which is the mismatch between the orientation of the field polarization line and the direction of the crystallographic axes.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Xunqing Yin ◽  
Yunlei Zhong ◽  
Yiming Cao ◽  
Yunlong Li ◽  
Guohua Wang ◽  
...  

The crystalline structures and magnetic and thermodynamic properties of a Gd4Ga2O9 single crystal grown with the optical floating zone technique have been investigated. Gd4Ga2O9 crystallizes in a monoclinic structure with the space group P21/c at room temperature. Temperature-dependent magnetic susceptibility measurements along the three crystallographic axes reveal a paramagnetic (PM) behavior between 2 and 300 K. A Curie–Weiss (CW) law fit was carried out and the CW temperature θCW and magnetic frustration parameter f were calculated; these suggest antiferromagnetic (AFM) interactions between Gd3+ spins and a strong magnetic frustration. The field dependence of the magnetization at 2 K further confirms the magnetic frustration characteristics. A distinct λ-shaped peak at 1.4 K in the heat capacity curves suggests a transition from the PM to AFM phase. The magnetic entropy is contributed solely by Gd3+ ions.


2021 ◽  
Author(s):  
Maria Gema Llorens ◽  
Albert Griera ◽  
Paul D. Bons ◽  
Ilka Weikusat ◽  
David Prior ◽  
...  

Abstract. Creep due to ice flow is generally thought to be the main cause for the formation of crystallographic preferred orientations (CPOs) in polycrystalline anisotropic ice. However, linking the development of CPOs to the ice flow history requires a proper understanding of the ice aggregate's microstructural response to flow transitions. In this contribution the influence of ice deformation history on the CPO development is investigated by means of full-field numerical simulations at the microscale. We simulate the CPO evolution of polycrystalline ice under combinations of two consecutive deformation events up to high strain, using the code VPFFT/ELLE. A volume of ice is first deformed under co-axial boundary conditions, which results in a CPO. The sample is then subjected to different boundary conditions (co-axial or non-coaxial) in order to observe how the deformation regime switch impacts on the CPO. The model results indicate that the second flow event tends to destroy the first, inherited fabric, with a range of transitional fabrics. However, the transition is slow when crystallographic axes are critically oriented with respect to the second imposed regime. Therefore, interpretations of past deformation events from observed CPOs must be carried out with caution, particularly, in areas with complex deformation histories.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 848
Author(s):  
Aída Serrano ◽  
Jesús López-Sánchez ◽  
Iciar Arnay ◽  
Rosalía Cid ◽  
María Vila ◽  
...  

In this work, the functional character of complex α-Fe2O3(0001)/SrTiO3(111) and Au(111) islands/α-Fe2O3(0001)/SrTiO3(111) heterostructures has been proven as gas sensors at room temperature. Epitaxial Au islands and α-Fe2O3 thin film are grown by pulsed laser deposition on SrTiO3(111) substrates. Intrinsic parameters such as the composition, particle size and epitaxial character are investigated for their influence on the gas sensing response. Both Au and α-Fe2O3 layer show an island-type growth with an average particle size of 40 and 62 nm, respectively. The epitaxial and incommensurate growth is evidenced, confirming a rotation of 30° between the in-plane crystallographic axes of α-Fe2O3(0001) structure and those of SrTiO3(111) substrate and between the in-plane crystallographic axes of Au(111) and those of α-Fe2O3(0001) structure. α-Fe2O3 is the only phase of iron oxide identified before and after its functionalization with Au nanoparticles. In addition, its structural characteristics are also preserved after Au deposition, with minor changes at short-range order. Conductance measurements of Au(111)/α-Fe2O3(0001)/SrTiO3(111) system show that the incorporation of epitaxial Au islands on top of the α-Fe2O3(0001) layer induces an enhancement of the gas-sensing activity of around 25% under CO and 35% under CH4 gas exposure, in comparison to a bare α-Fe2O3(0001) layer grown on SrTiO3(111) substrates. In addition, the response of the heterostructures to CO gas exposure is around 5–10% higher than to CH4 gas in each case.


Author(s):  
Aída Serrano ◽  
Jesus López-Sánchez ◽  
Iciar Arnay ◽  
Rosalía Cid ◽  
Maria Vila ◽  
...  

In this work epitaxial Au islands have been grown on epitaxial α-Fe2O3 thin film by pulsed laser deposition on SrTiO3(111) substrate. Both Au and α-Fe2O3 layer show an island-type growth with an average particle size of 40 and 62 nm, respectively. The crystallographic coupling of lattices is confirmed with a rotation of 30º between the in-plane crystallographic axes of α-Fe2O3(0001) structure and those of SrTiO3(111) substrate and between the in-plane crystallographic axes of Au(111) and those of α-Fe2O3(0001) structure. α-Fe2O3 is the only phase of iron oxide identified before and after its functionalization with Au nanoparticles. In addition, its structural character-istics are also preserved after Au deposition, with minor changes at short-range order. The func-tional character of the complex systems as gas sensor has been proven at room temperature. Con-ductance measurements of Au(111)/α-Fe2O3(0001)/ SrTiO3(111) system show that the incorpora-tion of Au islands on top of the α-Fe2O3(0001) layer induces an enhancement of the gas-sensing ac-tivity for CO and CH4 gas in comparison to a bare α-Fe2O3(0001) layer grown on SrTiO3(111).


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuejin Wan ◽  
Yangfan Hu ◽  
Zhipeng Hou ◽  
Biao Wang

Reorientation of skyrmion crystal (SkX) with respect to crystallographic axes is believed to be insensitive to anisotropies of fourth order in spin-orbit coupling, for which sixth order terms are considered for explanation. Here, we show that this is wrong due to an oversimplified assumption that SkX possesses hexagonal symmetry. When the deformation of SkX is taken into account, fourth order anisotropies such as exchange anisotropy and magnetocrystalline anisotropy have pinning (in this work, the word ‘pinning’ refers to the reorientation effects of intrinsic anisotropy terms) effects on SkX. In particular, we reproduce some experiments of MnSi and Fe1−xCoxSi by considering the effect of fourth order magnetocrystalline anisotropy alone. We reproduce the 30∘ rotation of SkX in Cu2OSeO3 by considering the combined effects of the exchange and magnetocrystalline anisotropies. And we use the exchange anisotropy to explain the reorientation of SkX in VOSe2O5.


2021 ◽  
pp. 108128652110157
Author(s):  
MN Krivosheina ◽  
EV Tuch

It was shown for the first time that when modelling the deformation of materials with cubic symmetry (at full stress), the rotation of the computational axes leads to the identification of anisotropic volumetric compressibility. Loading of the materials with cubic symmetry of properties in the directions not coincided with the main directions (for example, 011) allows one to detect 75% cases of the auxetic single crystals (i.e. with negative Poisson’s ratio). In these cases, the negative volumetric compressibility has anisotropy, in contrast to the volumetric compressibility calculated along the crystallographic axes for cubic materials. Anisotropy of the volumetric compressibility leads to anisotropy of velocities of propagation of body waves. This paper considers several elastoplastic problems for a cubic material with different orientations of a coordinate system about its crystallographic axes. The behaviour of such a material under dynamic loads is modelled with an account of anisotropic bulk compressibility to provide the same anisotropy of bulk wave velocities in the elastic and plastic ranges and a uniform pressure function at the elastic-to-plastic strain transition. For each orientation of the coordinate system and respective planes, different values at the indicatrices of elastic constants are specified, and this specifies different deformation processes in cubic materials. Such an effect is demonstrated by solving three problems in three-dimensional (3D) statements approximating the following processes: (1) one-dimensional elastoplastic deformation in a thin target impacted by a thin plate; (2) uniform compression in a spherical body under pulsed hydrostatic pressure; and (3) 3D elastoplastic deformation in a cylindrical body striking a rigid target in view of anisotropic bulk compressibility. The problems were solved numerically using original programs based on the finite element method modified by GR Johnson for impact problems. Solving problems in a 3D formulation makes it possible to take into account the dependences of the direction of the elastic and plastic characteristics of the material, as well as the velocities of propagation of elastic and plastic waves from that direction. The simulation results suggest that for cubic materials, changing the orientation of two coordinate axes in a plane changes the strains along all three axes, including those perpendicular to this plane. It is concluded that anisotropic bulk compressibility in cubic materials should be allowed for by mathematical models of their elastic and plastic deformation. We demonstrate that the orientation of a computational coordinate system for cubic materials should be in those directions in which their deformation is analysed in each particular case.


Author(s):  
David Wenhua Bi ◽  
Priya Ranjan Baral ◽  
Arnaud Magrez

The crystal structure of Ba5(IO6)2, pentabarium bis(orthoperiodate), has been re-investigated at room temperature based on single-crystal X-ray diffraction data. In comparison with a previous crystal structure determination by the Rietveld method, an improved precision of the structural parameters was achieved. Additionally, low-temperature measurements allowed the crystal structure evolution to be studied down to 80 K. No evidence of structural transition was found even at the lowest temperature. Upon cooling, the lattice contraction is more pronounced along the b axis. This contraction is found to be inhomogeneous along different crystallographic axes. The interatomic distances between different Ba atoms reduce drastically with lowering temperature, resulting in a closer packing around the IO6 octahedra, which remain largely unaffected.


Author(s):  
V.A. Trush ◽  
◽  
N.S. Kariaka ◽  
I.S. Konovalova ◽  
S.V. Shishkina ◽  
...  

N-(dimethoxyphosphoryl)-1-methylpyridinium-4-carboximidate, a new carbacylamidophosphate-type compound, was synthesized and characterized by means of IR, 1H and 31P NMR and UV-Vis spectroscopies and X-ray analysis. The molecule of the synthesized compound has triclinic (P-1) symmetry, displays monomeric motif in crystal and crystalizes as solvate containing methanol molecule, which is connected to carbacylamidophosphate molecule through O(2)H(5A)–O(5) hydrogen bond. Through – stacking interactions, the molecules of the synthesized compound are linked in the chain along the a crystallographic axis. Several other intermolecular bonds connect these chains along b and c crystallographic axes. The intermolecular interactions with HH and OH contacts prevail in the crystalline structure of N-(dimethoxyphosphoryl)-1-methylpyridinium-4-carboximidate, the contribution of planar stacking CC contacts being equal to 4.1%. The synthesized compound was found to be well soluble in water. By using computer program PASS, we established that the synthesized substance is likely can exhibit 18 types of biological activity in experiment.


2020 ◽  
Vol 21 (4) ◽  
pp. 743-748
Author(s):  
M.Y. Derevianchuk ◽  
A.A. Аshcheulov ◽  
D.A. Lavreniuk

Peculiarities of electric current distribution in an anisotropic electrically conductive medium are considered and dependences of its longitudinal and transverse components on geometrical factors are established. In the case of a rectangular plate of length a, height b, and width c, the selected crystallographic axes are located in the plane of the side face (a × b), and one of these axes is oriented at an angle α to the edge α. Application to the upper and lower end faces of the plate of some potential difference leads to the appearance of longitudinal and transverse components of the flowing electric current.  This leads to the possibility of transforming the electric current magnitude. The methods of optimizing the transformation coefficient magnitude which is determined by both the magnitude of the anisotropy of the electrical conductivity of the plate material and the coefficient of its shape k = a/b. The design variants of anisotropic electrically conductive transformers are proposed. The use of this transformation effect makes it possible to expand the practical use of electroohmic phenomena. This principle of transformation will expand the areas of its use in metrology and measurement technology.


Sign in / Sign up

Export Citation Format

Share Document